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Abstract:
Quantum walks, the quantum analogy of classical random walks, have been studied in quan-
tum information theory through the search for efficient new quantum algorithms. It is known
that the diffusion of a quantum walker is quadratically faster compare to its classical coun-
terpart. Here we will focus on how the quantum walk distribution can be affected by the sta-
tistical properties of a walker in two dimensional space, where not only bosons and fermions,
but also anyons can appear. Exchanging two anyons can introduce phase factors or unitary
matrices. This leads to a study of braid group representations, knots, links and their Jones
polynomials. We consider the non-Abelian Ising anyonic model arising from the SU(2) level 2
Chern-Simons theory and present the results of our numerical calculations up to 25 time steps.
The diffusive behavior of an anyonic walker seems to approach (for large number of steps)
the classical walker behavior.



Acknowledgement:
I would like to thank my supervisors, Dr. Jiannis Pachos, Prof. Gavin Brennen and Dr.
Petr Jizba, and my colleague Lauri Lehman for introducing me into the topic and helping
me understand it. I also thank Dr. Almut Beige for organizing my visit at the University of
Leeds. Finally, I want to thank Andreas Kurcz, Michal Hajdusek, Tony Blake, Ville Lahtinen
and all the other people from the School of Physics and Astronomy, University of Leeds for
making my stay in Leeds an enjoyable and unforgettable experience.



Contents

1 Introduction and motivation 4

2 Knot theory 6
2.1 Knots in mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Braids and the braid group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Jones polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Anyons 17
3.1 Anyons as flux-charge composites . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Ising anyonic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Anyonic quantum walk on a line 26
4.1 Classical random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Quantum walk on a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 A walk with Ising anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Evaluation of the trace over the fusion space . . . . . . . . . . . . . . 33
4.3.2 Numerical calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion, discussion and outlook 41
5.1 Why the Ising walk behaves classically . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Walks with SU(2) level k anyons . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



Chapter 1

Introduction and motivation

Quantum versions of random walks came to prominence in quantum information theory
through the search for efficient algorithms. Since classical random walks provide the tech-
niques for some of the best classical algorithms, it was natural to look for a quantum equiv-
alent. Typically, a quantum walk gives a quadratic algorithmic speed-up over classical ones
[2] and for some problems an exponential speed-up is possible [3]. This is a generalization of
the faster spreading behavior shown by the simplest quantum walk — a single walker on an
infinite line.

Quantum walk have since found wider applications than their algorithmic origins. For
example, they have been employed in modeling transport of charge or energy in biological
systems [4], in physical systems to show delocalization and quantum coherence [5, 6, 7], as
well as a model system interpolating between quantum and classical behavior [8]. Quantum
walks have been studied theoretically on many different structures: in higher dimensions [9],
under the effects of decoherence [10], with Dirac spin particles [11] and with a huge range of
variations on the basic walk dynamics.

Here we focus on the question of how the quantum walk distribution can be affected
by the statistical properties of the walker. Non-interacting bosons in quantum walks have
effectively already been shown to have identical properties to single quantum walkers through
experiments with coherent light [8, 12]. Omar el al. [13] studied quantum walks with two
bosonic of fermionic walkers. Entanglement in the initial state of these walkers gives strikingly
different behavior with respect to the standard quantum walk.

More exotic statistics than the bosonic and the fermionic can be found in two-dimensional
systems where anyons can appear. Exchanging two anyons can introduce phase factors or
unitary transformations. These evolutions are different representations of the braiding group.
Envisioning how the quantum walks can be performed with anyons, one realizes that the
problem takes the form of diffusion of a walker-anyon in the presence of other regularly
arranged static anyons. In particular, we embed a one dimensional quantum walker into
a two dimensional medium with a canonical line ordering of the anyons from left to right.
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When the anyonic walker is moving among the static anyons, then anyonic braiding is realized
evolving the overall state of the system in a non-trivial way. Hence, by considering an anyonic
walker we enrich the one particle diffusion problem with statistical properties.

In order to keep track of the statistical properties of anyons, it is useful to visualize their
worldlines that encode their braiding history. When the walker moves from the initial position
it braids with the straight worldlines of the static anyons. Finding the walker at a certain
position after a certain number of steps requires the consideration of all the different paths
of the same length with the same initial and final position. This gives rise to worldline links,
the complexity of which increases rapidly with respect to the number of the walker steps.

Before turning to the anyonic quantum walk we briefly introduce the standard quantum
walk and the classical random walk. We also take a look at general properties of anyons and
focus on a particular non-Abelian anyonic model — the Ising anyons — with fusion rules
arising from the SU(2) level 2 Chern-Simons theory. We will study the walk with these Ising
anyons and present the results of our numerical calculations.

In the first place, however, we make an introduction into the theory of knots, links and
braids since the Ising anyonic walker probability distribution, as we shall see, is expressed in
terms of the Jones polynomials (or the Kauffman brackets), i.e. phenomena that appear in
the knot theory, and the knowledge of the basic concepts of the knot theory will provide a
useful insight.
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Chapter 2

Knot theory

In this chapter we provide an introduction into the mathematical theory of knots. We talk
about knot equivalency and Reidemeister moves, we introduce links (multicomponent knots)
and define the linking number. We show how braids are described and how they can give
rise to knots and links. Our ultimate aim is to define an important knot invariant called the
Jones polynomial, since this quantity will later on be used to describe the spatial distribution
of our anyonic quantum walker.

2.1 Knots in mathematics

In mathematics, knot theory is the area of topology that studies mathematical knots. While
inspired by knots which appear in daily life in shoelaces and rope, a mathematician’s knot
differs in that the ends are joined together to prevent it from becoming undone. In precise
mathematical language, a knot is an embedding of a circle S1 in 3-dimensional Euclidean
space, R3. Thus every knot is homeomorphic to S1 and contains no intersections. Two
knots are equivalent if one can be transformed into the other via a deformation of R3 upon
itself (known as an ambient isotopy); these transformations correspond to manipulations of a
knotted string that do not involve cutting the string or passing the string through itself (at
each moment the circle remains embedded).

The most trivial example of a knot is the unknot, shown on Fig. 2.1(a). Under an
ambient isotopy it can be positioned quite differently in space (Fig. 2.1(b), (c)). All these
curves, however, represent the same knot. To decide whether two curves correspond to the
same knot or not is the basic problem of the knot theory. Although algorithms exist to solve
this problem [17], they can be extremely time-consuming.

In order to visualize and manipulate knots it is often useful to project them onto a plane,
as we have done already in Fig. 2.1, obtaining a knot diagram. A small change in the direction
of projection will ensure that it is one-to-one with the knot in R3 except at the double points,
called crossings, where the ”shadow” of the knot crosses itself once transversely (see [18] for
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Figure 2.1: Three different projections of the same knot — the unknot.

details). At each crossing, to be able to recreate the original knot, the over-strand must be
distinguished from the under-strand. This is often done by creating a break in the strand
going underneath.

The knot diagram can be naturally viewed as a graph. We may perform a planar isotopy
to deform the projection plane keeping the graph unchanged (Fig. 2.2). The planar isotopy

Figure 2.2: Two knot projections differing from each other by a planar isotopy represent the
same knot. The knot depicted here is called the trefoil knot.

doesn’t change the equivalence class of the corresponding knot as it can be realized (in an
obvious way) by an ambient isotopy of R3. On the other hand, ambient isotopy of the 3-space
can easily change the knot diagram. Different diagrams can thus correspond to the same knot
(as in Fig. 2.1) in which case we shall say that these diagrams are equivalent.

There are three basic ways of transforming a knot diagram into an equivalent one (modulo
planar isotopy), named after the German mathematician Kurt Reidemeister. They are de-
picted in Fig. 2.3. It is understood that these moves are to be performed locally on the knot
diagram and that no other strands are present (locally) than those depicted in the moves. It
is apparent that any sequence of these moves only changes the knot projection, not the knot
itself. A natural question to ask is: Given two equivalent knot diagrams (i.e. two projection
of the same knot) does there always exist a sequence of Reidemeister moves that turns one
diagram into the other? It was proved by Reidemeister in 1926 that it is indeed the case [19].

Knot theory also studies multicomponent knots, so called links. A link is an embedding
of a collection of circles in R3. Some examples of links are shown in Fig. 2.4. Knots can
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Figure 2.3: Reidemeister moves performed on a knot projection don’t change the knot (they
yield equivalent knot diagrams). (a) Type I (or the first) Reidemeister move twists or untwists,
(b) type II (or the second) move passes one strand over another and (c) type III (or the third)
move moves a strand under a crossing.

Figure 2.4: Some simple examples of links with more than one component: (a) Hopf link, (b)
Borromean rings, (c) Whitehead link, (d) n-component unlink (denoted Un).

be viewed as one-component links. Links are also treated using diagrams and, in fact, the
Reidemeister’s proof holds even in this more general case. We summarize:

Theorem 1 Two knot (or link) diagrams correspond to the same knot (or link) if and only
if there exists a sequence of Reidemeister moves that turns one diagram into the other.

Let us now consider 2-component links. If α and β are the two components of a link L,
and we orient them, we wish to define a new quantity - the linking number lk(α, β). The
linking number should represent the number of times that one strand winds around the other.
In the link diagram we focus only on those crossings that involve both components α and β

and denote the set of these crossings α u β. To each crossing c ∈ α u β we associate a sign
ε(c) according to Fig. 2.5. The linking number between components α and β of an oriented
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Figure 2.5: Each crossing in an oriented link projection can be assigned a sign ε as depicted.
The assignment is done in such a way that the positive crossing (ε = +1) can be identified
using the right hand rule with the thumb following one of the arrows and the rest of fingers
following the other one.

link L is defined as
lk(α, β) :=

1
2

∑

c∈αuβ

ε(c). (2.1)

Notice that we use a particular projection of the link in order to compute the linking number.
In fact, one can show that the computed linking number will always be the same, no matter
what projection of the link we use to compute it. It follows from the fact that lk(α, β) doesn’t
change under any of the three Reidemeister moves and the Theorem 1. Therefore the linking
number is an invariant of an oriented link.

For example, if L is the Hopf link with its components oriented as in Fig. 2.6(a) then
lk(1, 2) = 1. If, however, we change the orientation on one of the components (see Fig.

Figure 2.6: The Hopf link (in fact the simplest nontrivial example one can think of) is used
here to illustrate how the linking number depends on the orientation of the link components.
In the case (a) lk(1, 2) = 1, in the case (b) lk(1, 2) = −1.

2.6(b)) the linking number changes sign yielding lk(1, 2) = −1. In general, every change of
the orientation on one of the strands α, β causes all the crossings c ∈ α u β change from
positive to negative and vice versa, hence lk(α, β) → −lk(α, β).

If the link consists of more than two components, say L = α1 ∪ ... ∪ αn we may choose
a pair of components and compute the linking number between these two leaving the others
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out. Thus for all pairs (i, j) where 1 ≤ i < j ≤ n we get lk(αi, αj). For example, in the case
of the Borromean rings (see Fig. 2.4(b)) it is easily observed that all linking numbers are 0.
But, of course, the Borromean rings are not the only 3-component link with linking numbers
0, 0, 0. If we put 3 disjoint circles on a plane, we have a 3-component trivial link, whose
components apparently don’t link at all.

The linking numbers, being invariants of an oriented link1, allow us to sometimes distin-
guish links. For example, the Hopf link is certainly not the 2-component trivial link since it
has non-zero linking number. On the other hand, this technique doesn’t distinguish between
the Borromean rings and the 3-component unlink (although they are distinct and it can be
proved rigorously using the techniques of Section 2.3). The linking numbers provide only
necessary condition for two links to be equivalent. This is also the case, unfortunately, for
the polynomial invariants which we will introduce in Section 2.3.

2.2 Braids and the braid group

Braids are formed when n points on a horizontal plane are connected by n strings to n points
on another horizontal plane, parallel to the first one, directly below the first n points. The
strings are not allowed to go back upwards at any point in their travel. Two braids are
considered the same (or equivalent) if one can be transformed into the other via an ambient
isotopy of the space that fixes the endpoints of each string (Fig. 2.7).

Figure 2.7: An example of equivalent braids. One can be transformed into the other via an
ambient isotopy of the space that fixes the endpoints of each string.

In order to describe a given braid we define the braid group. The braid group Bn of
n-strand braids is the group generated by n− 1 symbols σ1, ..., σn−1 (depicted in Fig. 2.8(a))
with the operation of concatenation (see Fig. 2.8(b)). The identity element is just ”n straight
lines” (Fig. 2.9(a)) and the inverse of some generator σj , denoted σ−1

j , has contrary to σj the
opposite type of crossing (Fig. 2.9(b)). The group relation

σ−1
j σj = σjσ

−1
j = 1 (2.2)

1The absolute values of linking numbers |lk(α, β)| are in addition invariants of non-oriented links (they do

not depend on the link components’ orientations).
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Figure 2.8: (a) The generator of the braid group Bn (j runs from 1 to n− 1). (b) The braid
group operation of concatenation — one braid is put on top of the other and the corresponding
strands are glued together.

Figure 2.9: (a) The identity element in the braid group Bn. (b) The inverses of the generators
σj of Bn.

in fact corresponds to the second Reidemeister move (recall Fig. 2.3(b)). The generators of
the braid group satisfy two additional relations:

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, ..., n− 2}, (2.3)

σiσj = σjσi for i, j ∈ {1, ..., n− 1}, |i− j| ≥ 2. (2.4)

These relations are pictured in Fig. 2.10. Notice that the relation (2.3) in fact represents
the third Reidemeister move (compare Fig. 2.10(a) with Fig. 2.3(c)). The relations that
hold in the braid group Bn, namely (2.2), (2.3) and (2.4), guarantee that any two words in
braid generators (and their inverses) represent the same braid if and only if they are the same
element of Bn. This group approach to braids is due to Emil Artin [23] and therefore Bn is
sometimes called Artin braid group.

Given a braid b ∈ Bn one may form the link (b)Markov, called the Markov closure of b, in
a manner described by Fig. 2.11(a). A result of J. Alexander on the other hand asserts that

11



Figure 2.10: The braid group relations: (a) represents the relation 2.3 and (b) represents the
relation 2.4. The braid on the left hand side is the same as that on the right hand side.

Figure 2.11: How to turn a braid into a link? Two of many imaginable ways are presented
here: (a) the Markov closure, (b) the Plat closure.

for any link L there exists a braid b such that L = (b)Markov.2 The proof can be found in
[15]. As an exercise, check that for σ2

1 ∈ B2 one obtains

(σ2
1)

Markov = Hopf link (2.5)

and that the braidword (σ−1
1 σ2σ

−1
1 σ2σ

−1
1 σ2) ∈ B3 yields

(σ−1
1 σ2σ

−1
1 σ2σ

−1
1 σ2)Markov = Borromean rings. (2.6)

The Markov closure is not the only way how to construct links from braids. Later on in
this text we will also make use of the Plat closure which can be applied to any braids with
even number of strands. It is described by Fig. fig:braids-closures(b). Note that for any
b ∈ Bn there exist b̃ ∈ B2n such that (b)Markov = (b̃)Plat. Fig. 2.12 shows how b̃ can be
constructed.

2Here b is not unique. For example, for the braid σ1bσ
−1
1 we obtain the same link: (b)Markov =

(σ1bσ
−1
1 )Markov.
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Figure 2.12: The link that is obtained by Markov closing a braid on n strands can be as well
obtained by Plat closing the corresponding braid on 2n strands.

At the end of this section let’s look at the braid group from a rather different angle.
Consider n indistinguishable particles in a plane (Fig. 2.13). The configuration space of this

Figure 2.13: Four indistinguishable particles in a plane evolving in time. As they move
around one another, the particles’ worldlines in the 2+1 dimensional spacetime constitute a
braid (provided that the initial and the final configuration is the same). The braid group B4

is the fundamental group of the space of four indistinguishable particles.

physical system is
X = (Cn\∆)/Sn, (2.7)

where ∆ = {(z1, ..., zn) ∈ Cn|zi = zj for some i < j} and Sn is the symmetric group on a
set of n elements. As the particles move around in the plane, their worldlines trace curves in
the 2 + 1 dimensional spacetime as depicted in Fig. 2.13. The braid group Bn is then the
fundamental group of the space X, i.e.

Bn = π1(X). (2.8)
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2.3 Jones polynomial

The Jones polynomial VL(t) is a Laurent polynomial in the variable
√

t which is defined for
every oriented link L. The original definition via von Neumann algebras was given by Jones
in [22]. We shall not discuss this original definition as the theory involved exceeds the scope
of this thesis. Instead we present two simple recipes how to calculate the Jones polynomial.

The most elementary way to calculate VL(t) is to use the skein relation

1
t
VL+ − tVL− = (

√
t− 1√

t
)VL0 (2.9)

which holds for any 3 oriented links having diagrams which are identical except near one
crossing where they differ as shown in Fig. 2.14. Two additional axioms are needed:

Figure 2.14: The links L0, L+ and L− are identical except near one crossing. The skein
relation (2.9) is then used to calculate the Jones polynomial.

• If L is ambient isotopic to L′, i.e. L and L′ are in fact the same link, then VL(t) = VL′(t).

• For L = ”1-component unlink” we define VL(t) = 1.

Notice that by appropriate change of crossings in the knot projection any knot can be
reduced to the unknot. Consider, for example, a knot depicted in Fig. 2.15(a) and choose
the ”starting” point. Now, by appropriate change of crossings in the knot diagram (Fig.
2.15(b)) we can achieve that as we traverse the knot, viewed from the side, we decrease the
”z-coordinate” until we get close enough to the starting point (see Fig. 2.15(c)). Now we only
have to ”climb” back to the starting point. It is clear, using the side view, that the resulting
knot is the unknot. Similarly any link can be reduced to an n-component unlink Un. But
how do we compute VUn(t)?

Let’s take a link L0 containing two disjoint parts L and U1 where L is an arbitrary oriented
link and U1 is the oriented unknot (see Fig. 2.16(a)). In order to use the skein relation (2.9)
we find L− and L+ (Fig. 2.16(b), (c)). Applying the first Reidemeister move (recall the
definition from Fig. 2.3(a)) we realize that L− = L+ = L. The skein relation (2.9) then reads

1
t
VL − tVL = (

√
t− 1√

t
)VL∪U1 . (2.10)
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Figure 2.15: Any knot can be unknotted by appropriate change of crossings in the knot
projection. We show an example of the trefoil knot which gets unknotted after one change
already ((a)→(b)). The side view (c) clarifies the unknottedness of the knot.

Figure 2.16: A special choice of L0 is made. In (a), L is an arbitrary oriented link. One can
see from (b) and (c) that the corresponding links L+ and L− are equal to L.

Thus for any oriented link L we obtain the identity

VL∪U1(t) = −(
1√
t

+
√

t)VL(t) , (2.11)

which can be iterated for L = Un to yield

VUn(t) = (− 1√
t
−
√

t)n−1VU1(t) = (− 1√
t
−
√

t)n−1 . (2.12)

Now we know how to calculate the Jones polynomial for an arbitrary oriented link and
we can find that, for example, for the Hopf link

V = −
√

t(1 + t2) . (2.13)

Another skein-like way to calculate the Jones polynomial was found by Kauffman in
[24]. This time begin with an unoriented link diagram of a link L. The Kauffman bracket
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polynomial 〈L〉 (A) of such a diagram is calculated using the following three rules:

〈©〉 = 1 , (2.14)
〈 〉

= A

〈 〉
+ A−1

〈 〉
, (2.15)

〈©∪ L′
〉

= (−A2 −A−2)
〈
L′

〉
, (2.16)

where L′ is an arbitrary non-empty link projection and L′ and© are disjoint. The 〈·〉 notation
means that the relation may be applied to that part of the link diagrams inside the bracket,
the rest of the diagrams being identical.

Furthermore let’s define the writhe of an oriented link diagram L:

w(L) =
∑

c

ε(c) , (2.17)

where the sum runs over all crossings c in the link diagram L and the crossing sign ε(c) has
been defined earlier in the Fig. 2.5.

It was proved by Kauffman in [24] that the Jones polynomial of an oriented link L is given
by the formula

VL(t) = VL(A−4) = (−A)−3w(L) 〈L〉 (A) . (2.18)

The definitions (2.14–2.16) and (2.17) guarantee that the Jones polynomial defined via (2.18)
is indeed an invariant of ambient isotopies.3

The formula (2.18) has some advantages over the approach via (2.9). It makes clear how
the orientation of the link components affects the resulting Jones polynomial — one only
needs to calculate the writhe w(L) which is an easy task. Also, this method for calculating
VL(t) is very concrete and leads to the goal straightly since (2.15) allows us to eliminate
every crossing, thus yielding a sum of diagrams containing unknotted disjoint loops only.
Contributions of these diagrams are then easily calculated using the rules (2.14) and (2.16).4

You may wish to use this method to verify the result (2.13). In the case of the Hopf
link w(L) = ±2 depending on the orientation of the components of the Hopf link and the
Kauffman bracket 〈L〉 (A) = −A4 −A−4. Thus (2.18) yields

V (t) = −
√

t(1 + t2) (2.19)

and
V (t) = − 1√

t
(1 +

1
t2

) . (2.20)

3This essential property is thus a consequence of the Kauffman’s definition whereas in the approach via the

skein relation (2.9) the invariance under ambient isotopies was one of the defining axioms.
4Still, however, the task of calculating VL(t) is exponentially hard in the number of crossings.
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Chapter 3

Anyons

A central theme of quantum theory is the concept of indistinguishable particles. For example,
all electrons in the world are exactly alike. Therefore, for a system with many electrons, an
operation that exchanges two of the electrons (swaps their positions) is a symmetry — it
leaves the physics unchanged. This symmetry is represented by a unitary transformation
acting on the many-electron wave function.

For the indistinguishable particles in three dimensional space that we normally talk about
in physics, particle exchanges are represented in two distinct ways. If the particles are bosons
then an exchange of two particles is represented by an identity operator: the wave function
is invariant and we say that the particles obey Bose statistics. If the particles are fermions
then an exchange is represented by multiplication by (−1): the wave function changes sign
and we say that the particles obey Fermi statistics.

In one dimension the exchange of particles causes them inevitably to collide. Thus if the
wave function changes sign when two identical particles are exchanged, we could say that
the particles are noninteracting fermions, but we could as well say that the particles are
interacting bosons such that the sign change is induced by the interaction as the particles
pass one another.

Thus, identical-particle statistics is a rather tame concept in three (or more) spatial di-
mensions and also in one dimension. But in between these two cases, in two dimensions,
a remarkably rich variety of types of particle statistics is possible. Apart from bosonic and
fermionic behaviors, arbitrary phase factor or even non-trivial unitary evolutions can be ob-
tained when two particles are exchanged [27]. Particles with such an exotic behavior were
named anyons by Frank Wilczek.

The study of anyons started as a theoretical construction of two dimensional models
[28]. It was soon realized that they can be encountered in physical systems with effective two
dimensional behavior. Even in our three dimensional world, a two dimensional gas of electrons
can be realized by trapping the electrons in a thin layer between two slabs of semiconductor,
so that at low energies the electron motion in the direction perpendicular to the layer is

17



frozen out. In the presence of sufficiently strong magnetic field and low temperature these
confined electron gases give rise to the fractional quantum Hall effect [29, 30]. The low energy
excitations of these systems are localized quasiparticles that can actually exhibit anyonic
statistics.

Systems that support anyons are called topological as their properties depend on global
characteristics and not on local details. In the nineties it was argued that anyons could be
employed to perform quantum computation [31].

Quantum computation requires the encoding of quantum information into qubits (two
level quantum systems) and its manipulation with quantum gates (unitary operators acting
on qubits). Errors, however, are present in any physical realization of quantum computation,
coming from the environment or from control imperfection. Shor [32] and Steane [33] in-
dependently demonstrated that for sufficiently isolated quantum systems and for sufficiently
precise quantum gates, quantum error correction can allow fault-tolerant quantum computa-
tion. However, the required limits demand a large overhead in qubits and quantum gates.

In contrast to this, anyonic quantum computation promises to solve the problem of errors
from the hardware level. It was demonstrated by Kitaev [34] that a system of non-Abelian
anyons with suitable properties can indeed be used to perform fault-tolerant quantum com-
putation. The robustness against errors comes from the topological nature of the system.

3.1 Anyons as flux-charge composites

Let us take a closer look at the origin of anyons and their properties. First, let us recall the
Aharonov-Bohm effect [35]: If an electric charge q is adiabatically transported along a path
γ (counterclockwise) around a magnetic flux Φ, the wave function of the charge acquires a
topological phase eiqΦ (we are using the units with c = ~ = 1), where

Φ =
∮

γ
A · dl =

∫ ∫

S
(∇×A) · ds =

∫ ∫

S
B · ds . (3.1)

Here B is the magnetic field, A its vector potential and S is a surface enclosed by the path
γ.

The word ”topological” means that the Aharonov-Bohm phase is robust when we deform
the trajectory of the charged particle — all that matters is the ”winding number” of the
charge about the flux. Note that in order to acquire a non-zero Aharonov-Bohm phase, the
electric charge q doesn’t even need to visit the region where B 6= 0, i.e. q is influenced by
the vector potential A itself. This marvelous result of Aharonov and Bohm totally changed
the understanding of the role of the potential A (and in general of the four-potential Aµ) in
physics — rather than a mathematical construct it became a physical quantity.

To visualize the behavior of anyons one should think of them as being two dimensional
composite particles consisting of a magnetic flux Φ confined inside an impenetrable circular
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wall and an electric charge q stuck to the outside of the wall (or ring in two dimensions).1

What happens if we perform an exchange of two of our flux-charge composite objects in a
counterclockwise sense? Each charge q is adiabatically transported half way around the flux
Φ of the other object. Thus each charge will acquire an Aharonov-Bohm phase that is, for
symmetry reasons, exactly half of the phase generated by a complete revolution of the charge
about the flux. Adding together the phases arising from the transport of both charges, we
find that the exchange of the two flux-charge composites changes their wave function by the
phase

exp
[
i

(
1
2
qΦ +

1
2
qΦ

)]
= eiqΦ ≡ eiθ . (3.2)

The phase θ, generated when the two objects are exchanged, matches the phase generated
when one of the two objects is rotated by 2π. In the latter case the charge q takes one full
spin around the flux Φ, thus acquiring the Aharonov-Bohm phase eiqΦ.

The exchange statistics of our flux-charge composite particles is described by the angle
θ ∈ [0, 2π). We refer to such particles as Abelian anyons. If the charges and fluxes, when
exchanged, generate a unitary matrix instead of a mere phase factor then the particles are
called non-Abelian anyons. In reality, the presence of charge and flux come from effective
emerging gauge theory that describes the low energy behavior of the model [36].

3.2 Ising anyonic model

In our study of anyonic quantum walks we will be concerned with the Ising anyonic model with
three particle types: 1 (vaccum), σ and ψ. These can be thought of as conserved quantum
numbers (charges) of the particles. The fusion rules

σ × σ = 1 + ψ , σ × ψ = σ , ψ × ψ = 1 , (3.3)

σ × 1 = σ , ψ × 1 = ψ , 1× 1 = 1 (3.4)

specify the possible values of the charge that can be obtained when two particles of known
charges are combined together, or, read backwards, specify the possible ways for a charge to
be split into two parts.2 Note that 1, σ and ψ are labels, not vector spaces. Thus × and +
are not the signs for tensor product and direct sum, respectively. Rather, fusion rules (3.3)
and (3.4) should be regarded as abstract relations on the label set {1, σ, ψ}. For example,
the first rule in (3.3) could also be written as {(σ, σ; 1), (σ, σ; ψ)}. The relation {(a, b; c)} is
symmetric in a and b, i.e. a × b = b × a. Physically, the fusion rules (3.3) signify that if we
bring together two σ anyons, they are either fused to 1 (vacuum), i.e. annihilate (i.e. σ is its

1In three dimensions one may envision a plane intersecting a magnetic solenoid directed perpendicular to

the plane.
2These fusion rules are the fusion rules of the SU(2)2 Chern-Simons theory. In fact, all anionic models with

no more than four particle types are closely related to the models that are found in the Chern-Simons theory.
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own antiparticle), or they give rise to ψ (i.e. there are two fusion channels); σ and ψ give σ;
and ψ with ψ fuse to the vacuum. According to the rules (3.4) the vacuum 1 fuses trivially
with all particles. Since σ × σ has two possible fusion channels, our anyonic model is called
non-Abelian. If there were no fusion rule with more than one possible outcome, the model
would be called Abelian. (General anyonic model is pedagogically introduced in [26].)

Assume that one creates from the vacuum a pair of anyons (σ, σ) (this is allowed by the
first fusion rule in (3.3)). The state of these anyons can be denoted as |σ, σ → 1〉 indicating
that if we fuse back these anyons, their fusion outcome is known to be 1 due to the conservation
of total charge. In general, when two arbitrary anyons are fused, it is possible to have various
outcomes depending on their total state. In particular, for two σ anyons whose fusion results
in ψ we define the state |σ, σ → ψ〉. We also represent these states diagrammatically – Fig.
3.1. The two distinguishable orthonormal (by definition) states |σ, σ → 1〉 and |σ, σ → ψ〉

Figure 3.1: The diagrammatic representation of the states in the topological Hilbert space of
a pair of σ anyons. (a) The fusion outcome is 1, (b) the fusion outcome is ψ.

span a two dimensional Hilbert space. This space is often called the ”topological Hilbert
space” of the pair of anyons (σ, σ) to emphasize that the quantum information encoded in a
state from this space is encoded non-locally — it is a collective property of the pair (σ, σ),
not localized on either particle. Therefore the information is not vulnerable to decoherence
due to local interactions with the environment.

When two particles undergo a counterclockwise exchange, their total charge c is un-
changed. Therefore the state |a, b → c〉 (in our case a, b, c ∈ {1, ψ, σ}) remains unchanged up
to a phase factor Rc

ab — Fig. 3.2(a). We refer to Rc
ab as to the R-matrix.

We assume that fusion in associative, i.e.

(a× b)× c = a× (b× c) , a, b, c ∈ {1, ψ, σ} . (3.5)

Mathematically, this is an axiom satisfied by the fusion rules of an anyonic model. Physically,
it is imposed because the total charge of a system of three particles ought not to depend
on whether we first fuse the first and the second particle and then fuse the result with the
third one, or first fuse the second and the third particle and the result with the first one.
Therefore, when three particles are fused to yield a total charge d, there are two natural ways
to decompose the topological Hilbert space (or fusion space) V d

abc of the three particles in

20



Figure 3.2: (a) The definition of the R-matrix. When particles a and b with fusion outcome
c are exchanged (in a counterclockwise sense) the state |a, b → c〉 acquires a phase Rc

ab. (b)
The definition of the F -matrix. The two different ways of fusing three particles are connected
through a unitary transformation F d

abc.

terms of the fusion spaces of pairs of particles:

V d
abc =

⊕
e

|a, b → e〉 ⊗ |e, c → d〉 =
⊕

f

|a, f → d〉 ⊗ |b, c → f〉 . (3.6)

The two natural orthonormal bases of V d
abc arising from this decomposition are related by a

unitary transformation F d
abc — the F -matrix (Fig. 3.2(b)).

For describing a system of many anyons it is convenient to adopt a standard basis for their
topological Hilbert space. Suppose that 2n anyons3 of type σ are arranged sequentially along
a line. Let the convention be that we first fuse the leftmost anyon with the second leftmost,
the result of their fusing with the third anyon from the left and so on (Fig. 3.3). Notice that
every even fusion outcome in this fusion chain is fixed by the fusion rules (3.3) and (3.4) to
be σ, i.e. the dimension of the fusion space H(2n)

fusion of 2n σ anyons is 2n−1 (total charge is
also fixed). When two σ anyons are added to the system, the dimension of the fusion space
raises by a factor of 2. Therefore one says that the quantum dimension of type σ anyons in
our Ising model is

√
2.

Of course, the basis is chosen arbitrarily. If we preferred, we could imagine fusing the
particles in a different order, and would obtain a different basis that could be expressed in
terms of our standard one with a help from the F -matrix.

It is possible to access the fusion space by braiding the particles’ world lines, i.e. by
exchanging the positions of the particles. It suffices to say how exchanges of neighboring
particles are represented; that is, to specify the action of the generators of the braid group.
So far, we have discussed only the action of the braid group on a pair of particles with definite
total charge (the R-matrix), which is not itself enough to tell us its action on the standard
bases, because the two particles don’t have a direct fusion channel in the standard basis
(except for the first two particles from the left).

3We specialize to an even number of anyons because of the further applications in our anyonic quantum

walk protocol.
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Figure 3.3: A vector of the standard basis of the topological Hilbert space of 2n σ anyons,
H(2n)

fusion. The freedom of choosing independently n − 1 parameters fj ∈ {1, ψ} translates in

the dimension of H(2n)
fusion being 2n−1.

Let us observe that by applying the F -matrix, we can move from the standard basis to
the basis in which the R-matrix is block diagonal, apply R, and then apply F−1 to return
back to the standard basis. The composition of these three operations, which expresses the
effect of braiding on the standard basis, is denoted B (see Fig. 3.4).

The R and F (and consequently B) matrices are highly constrained by algebraic consis-
tency conditions called the pentagon and hexagon identities (Fig. 3.5).

The pentagon identity involves the F -matrices only:

(F 5
12c)

d
a(F

5
a34)

c
b =

∑
e

(F d
234)

c
e(F

5
1e4)

d
b(F

b
123)

e
a ; (3.7)

whereas the hexagon identity relates both F and R matrices:

Rc
13(F

4
213)

c
aR

a
12 =

∑

b

(F 4
231)

c
bR

4
1b(F

4
123)

b
a . (3.8)

There exists a theorem, which says that no other conditions need to be imposed to ensure
the consistency between braiding (the R-matrices) and fusing (the F -matrices).

To obtain the R and F matrices for our Ising anyonic model (defined by the fusion rules
(3.3) and (3.4)), one needs to solve the equations (3.7) and (3.8).4 Let us use the reference
[1] to write the R and F matrices (in the basis {1, ψ}) that will be relevant for our anyonic
quantum walk with Ising anyons:

Rσσ ≡ diag(R1
σσ, Rψ

σσ) =

(
1 0
0 i

)
, (3.9)

4There are also alternative approaches [37].
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Figure 3.4: The braiding B of two particles that don’t have a direct fusion channel can be
expressed as a composition of three operations — F , R and F−1.

F σ
σσσ =

1√
2

(
1 1
1 −1

)
. (3.10)

The other relevant F -matrices (i.e. the rules that relate different bases of the fusion space)
are trivially determined by the fusion rules (3.3) and (3.4).

Now we can finally write the B-matrices to find what happens when two neighboring σ

anyons are exchanged (i.e. their worldlines are braided). Suppose there are 2n σ anyons
arranged in line and their fusion state is described by a vector (or a superposition of vectors)
|φ(f1, ..., fn−1)〉 ∈ H(2n)

fusion (recall the Fig. 3.3). The braiding of the anyons j and j + 1 (Fig.

3.6), denoted Bj , is represented by a linear operator on H(2n)
fusion ' (spanC{1, ψ})⊗(n−1) '

(C2)⊗(n−1).
Regarding the figures 3.3 and 3.6, we can see that the indices a, b, c in Fig. 3.6 may either

take the form
(a, b, c) = (σ, f, σ) , f ∈ {1, ψ} (3.11)

for j even or
(a, b, c) = (f, σ, f ′) , f, f ′ ∈ {1, ψ} (3.12)

for j odd. By employing the procedure described by Fig. 3.4 and expressions (3.9) and (3.10),
we obtain the results for Bj ’s, where 2 ≤ j ≤ 2n− 1, 5

B2k = 1⊗ ...⊗ 1︸ ︷︷ ︸
k−1

⊗B ⊗ 1⊗ ...⊗ 1︸ ︷︷ ︸
n−1−(k−1)−1

(3.13)

5j = 1 is a special marginal case which we shall not encounter during the anyonic quantum walk studied in

the next chapter.
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Figure 3.5: (a) The pentagon identity and (b) the hexagon identity are algebraic consistency
conditions that an anyonic model must satisfy. They can be used to find the F and R matrices
of the model.

and
B2k+1 = 1⊗ ...⊗ 1︸ ︷︷ ︸

k−1

⊗A⊗ 1⊗ ...⊗ 1︸ ︷︷ ︸
n−1−(k−1)−2

, (3.14)

where 1 is the identity matrix 2× 2,

B = F σ
σσσRσσ(F σ

σσσ)−1 =
ei π

4√
2

(
1 −i

−i 1

)
(3.15)

and

A =




1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1




=
ei π

4√
2
(1⊗ 1− iσ3 ⊗ σ3) , σ3 =

(
1 0
0 −1

)
. (3.16)

To find the matrix A one needs to substitute into the diagram Fig. 3.4: b = σ and (a, c) =
(1, 1), (1, ψ), (ψ, 1) and (ψ, ψ).

The matrices Bj form a representation of the braid group of 2n strands presented in the
section 2.2. This representation is not faithful as

B4
j = 1 . (3.17)

Notice that the Bj ’s are indeed unitary, i.e. B−1
j = B†

j .
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Figure 3.6: The braiding operation Bj swaps (in a counterclockwise manner) the particles on
positions j and j + 1.
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Chapter 4

Anyonic quantum walk on a line

Quantum walks have been studied in both the continuous time [38] and discrete time [39]
versions. We briefly describe the discrete time quantum walk on the infinite line, which will
be later generalized to the anyonic case. It is defined in direct analogy with a classical random
walk.

4.1 Classical random walk

In the classical discrete random walk, a particle (the walker) is located at one of a set of
definite positions (we will consider a set of integers on the line). In response to a random
event — for example, the flipping of a coin – the particle moves either right of left.1 This
process is iterated and the motion of the particle is analyzed statistically. These systems
provide good models for diffusion of particles in a fluid (the Brownian motion), the motion
of vacancies in a crystal and for other stochastic processes.

Denote the probability to find the walker after t steps at site s by Pt(s). The time evolution
of Pt(s) is described by the recursion equation

Pt+1(s) =
1
2

(
Pt(s− 1) + Pt(s + 1)

)
, s ∈ Z . (4.1)

For a walker starting at the origin at time t = 0 the recursion (4.1) has the solution

Pt(s) =
1
2t

(
t

t+s
2

)
, t ≥ 0 , s ∈ Z , (4.2)

where we use the convention that the binomial coefficient
(
n
k

)
is nonzero only if n and k are

nonnegative integers such that n ≥ k. Note that at even times only the even sites can be
occupied, while at odd times only the odd sites can be occupied. The distributions Pt(s) for
various times t are plotted in Fig. 4.1 and one can see that they spread in time.

1We will consider, for simplicity, the probability 1
2

to move in either direction
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Figure 4.1: The position probability distribution PT (s) of a classical random walker on an
infinite line at the times T = 5, 15 and 25. The variance of the distribution grows linearly in
time.

This spreading can be quantified by the time evolution of the variance

σ2(t) =< s2 > (t)− < s >2 (t) (4.3)

of the probability distributions Pt(s), where

< s > (t) =
∑

s

sPt(s) , (4.4)

< s2 > (t) =
∑

s

s2Pt(s) (4.5)

are the first and the second moment, respectively, of Pt(s). It is straightforward to calculate
that in our case of a classical random walk on line

< s >RW (t) = 0 , (4.6)

< s2 >RW (t) = t (4.7)
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and so
σ2

RW (t) = t . (4.8)

4.2 Quantum walk on a line

To make a quantum analogy of the random walk discussed above one commonly proceeds as
follows. We denote the basis states for the quantum walk as ordered pairs of labels |s〉space⊗
|c〉coin ≡ |s〉|c〉, where s ∈ Z is the position and c ∈ {0, 1} is the spin-like state of the coin.
The state of the walker is described by the wave function |Φ〉 ∈ H = span{|s〉|c〉}s∈Z,c∈{0,1}.

One step of the quantum walk is given by a unitary operator Ŵ acting on H. Ŵ is defined
as

Ŵ = (Ŝ† ⊗ |0〉〈0|+ Ŝ ⊗ |1〉〈1|)(Î ⊗ Û) , (4.9)

where Î is the identity operator onHspace = span{|s〉}s∈Z, Ŝ and Ŝ† are unitary shift operators
acting on Hspace in the following way

Ŝ|s〉 = |s + 1〉 , Ŝ†|s〉 = |s− 1〉 (4.10)

and Û is a unitary ”coin flipping” operator acting on the two dimensional Hilbert space
Hcoin = span{|0〉, |1〉}, chosen for the sake of simplicity

Û =
1√
2

(
1 1
1 −1

)
. (4.11)

Starting from the initial state |Φ(0)〉 = |0〉 ⊗ |c0〉 and applying t times the operator Ŵ ,
we obtain the state

|Φ(t)〉 = Ŵ t|Φ(0)〉 . (4.12)

Ultimately, we are interested in the probability distribution Pt(s) of the spatial location, s, of
the walker after t steps. For this purpose we trace out the coin degree of freedom to obtain
the reduced density matrix

ρspace(t) = Trcoin(|Φ(t)〉〈Φ(t)|) (4.13)

and calculate the expectation values of position measurements

Pt(s) = Tr
(
|s〉〈s|ρspace(t)

)
= 〈s|ρspace(t)|s〉 . (4.14)

As the walk progresses, quantum interference occurs whenever there is more than one
possible path of t steps that leads to the same position. This interference is both constructive
and destructive, which causes some probabilities to be amplified or decreased at each time
step. This leads to the different behavior compare to the classical random walk (plots for
the initial state |Φ(0)〉 = |0〉 ⊗ |0〉 are given in Fig. 4.2). In the classical random walk there
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Figure 4.2: The position probability distribution PT (s) of a quantum walker on an infinite
line at the times T = 5, 15 and 25. The distribution is not symmetric, it rather has an evident
left drift, which is a consequence of the choice of Û and |c0〉. The variance of the distribution
grows quadratically in time.

is only one path (particle history) being realized at a time whereas in the quantum walk all
possible particle histories are realized simultaneously, which causes them to interfere.

Quantum walks are often studied numerically as it proves hard to give a closed formula
for |Φ(t)〉 and Pt(s). Some analytic approximative results have been obtained though [39].
An important difference between the classical random walks on line and the quantum walks
on line is in the rate of spreading characterized by the variance σ2(t). Unlike in the case of
the classical random walk, where in general σ2

RW ∼ t, the variance of the quantum walk grows
quadratically:

σ2
QW ∼ t2 . (4.15)

This quadratic speedup can be employed to perform certain computational tasks faster
using so called quantum algorithms. Some famous examples are Grover’s database search
algorithm [41] and Shor’s integer factorization algorithm [42].
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4.3 A walk with Ising anyons

In order to reveal the statistics of anyons in a quantum walk, we consider a single anyonic
walker, denoted w, braiding around other anyons (labeled by an integer index j) which stay
in fixed positions. The anyons involved are all of the same type σ. We use the Ising anyonic
model described in Sec. 3.2, i.e. our anyons are non-Abelian.2 The anyons are created in pairs
from the vacuum and placed in a canonical order in the plane with position (space between
two adjacent static anyons) labeled by an integer s, as seen in Fig. 4.3(a).

Figure 4.3: (a) The anyons, which are free to move in the plane, are placed in line and labeled
from left to right by an index j. The walker, denoted w, occupies positions labeled by an
integer s (the j-th anyon is situated between the positions j− 1 and j). We show the case for
which T , the maximum number of steps, is even. The case when T is odd differs only very
slightly. (b) The initial fusion state of the walk — σ anyons are created from the vacuum in
pairs.

The initial state in the fusion space is depicted in Fig. 4.3(b). Employing the F -matrices
(in fact, here it suffices to use just the fusion rules of the Ising model (3.3) and (3.4)), the

2The Abelian case is discussed in [1]. The variance of the walk can be probed analytically and it behaves

qualitatively the same as in the usual quantum walk (see section 4.2 in [1]), i.e. grows quadratically in the

number of steps.
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expression of the initial fusion state in the standard basis is found to be

|φin〉 = |φ(1, ..., 1︸ ︷︷ ︸
n−1

)〉 . (4.16)

The number of created anyons, 2n, defines the maximum number of steps, T , that the
walker can perform without reaching the boundary points. To perform a T -step walk, we
assume a creation of n = 2dT

2 e+ 1 pairs of anyons (dxe is the ceiling function).
The walker moves to the left or to the right by always braiding in the anticlockwise sense

with its neighboring anyons (again Fig. 4.3(a)). This can be achieved by employing only one
coin (which has two degrees of freedom). One can show that the braidwords (the sequences
of the elements of the braid group) that result from this quantum walk have the same com-
putational power as arbitrary braidwords (i.e. the case when one allows both clockwise and
anticlockwise braiding). Recall the relation (3.17) which implies B−1

j = B3
j . Thus, braidings

equivalent to clockwise moves can be produced given enough anticlockwise ones. Notably,
fixing the chirality of the braiding means that Abelian sectors of any physical theory will not
contribute to the walker’s distribution since all walking paths accumulate the same overall
phase. Hence the protocol with only anticlockwise braidings probes the truly non-Abelian
statistics.

The Hilbert space of our system is

H(T ) = H(T )
space ⊗Hcoin ⊗H(2n)

fusion , (4.17)

where T is the maximum number of steps and 2n is the number of anyons.3 H(T )
space =

span{|s〉}T
s=−T describes the spatial position of the walker and Hcoin = span{|0〉, |1〉} carries

the information about the coin outcome, which dictates the walker to move left or right and
braid anticlockwise with its left or right neighbour, respectively. The local degrees of freedom
of the other anyons, while measurable, will be conserved during this walk and will be ignored.

When the walker braids around a static anyon j, the action on the fusion space H(2n)
fusion

is represented by a unitary operator Bj . The matrices Bj , j = 0,±1,±2, ..., are the ones
derived in Section 3.2 and given by the expressions (3.13-3.16). Only, the index j is shifted
in such a way that B0 of the anyonic quantum walk corresponds to Bn given by (3.14).

One step of the anyonic quantum walk is given by a unitary operator Ŵ acting on H(T ).
The definition of Ŵ is analogous to the quantum walk case (compare with (4.9)), but more
complicated for we need to incorporate, in addition, the fusion space with braiding operations
which are position dependent. Thus

Ŵ =
∑

s

(Ŝ† ⊗ |0〉〈0| ⊗Bs + Ŝ ⊗ |1〉〈1| ⊗Bs+1)(Î ⊗ Û ⊗ Î)(|s〉〈s| ⊗ Î ⊗ Î) , (4.18)

3Although T must be specified before starting the walk in order to create appropriate (finite) number of

anyons, this is no actual limitation as T can be chosen arbitrarily large.
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where the sum is taken over all positions, Ŝ and Ŝ† are defined by (4.10) and the coin operator

Û is chosen to be the same as in the quantum walk case (4.11), i.e. Û = 1√
2

(
1 1
1 −1

)
.

Let the initial state of our anyonic quantum walk be

|Φ(0)〉 = |0〉 ⊗ |0〉 ⊗ |φin〉 (4.19)

with |φin〉 as in (4.16). After t steps of the walk (t < T ), |Φ(0)〉 evolves to

|Φ(t)〉 = Ŵ t|Φ(0)〉 =
∑

~a∈{0,1}t

|s~a〉 ⊗
(|at〉〈at|Û |at−1〉...〈a2|Û |a1〉〈a1|Û |0〉

)⊗B~a|φin〉 , (4.20)

where the sum runs over all bitstrings ~a = (a1, ..., at) of the length t, i.e. over all possible
histories of the walker. Naturally, ai = 0 means ”step to the left” and ai = 1 ”step to the
right”. We denoted s~a the final position of the history ~a , i.e.

s~a = (number of 1’s in ~a)− (number of 0’s in ~a) . (4.21)

Finally, we denoted B~a the braidword coming from the history ~a. B~a is nonlocal since, while
building it up, we need to keep track of the position: if the walker is located at the position
s and steps left (right), the braidword gains the matrix Bs (Bs+1) respectively. Hence

B~a ≡
t∏

i=1

Bs(a1,...,ai−1)+ai . (4.22)

For example, for t = 6 and the history ~a = (1, 1, 0, 0, 0, 0), we obtain the braidword B~a =
B−1B0B1B2B2B1.4

Since we chose the coin flipping operator conveniently, we can write the coin part of the
history ~a as

|at〉〈at|Û |at−1〉...〈a2|Û |a1〉〈a1|Û |0〉 =
(

1√
2

)t

(−1)z(~a)|at〉 , (4.23)

where the newly introduced function z(~a), which counts the number of pairs of adjacent 1’s
in the bitstring ~a, can be written as

z(~a) =
t−1∑

i=1

aiai+1 . (4.24)

The density matrix ρ(t) corresponding to the state |Φ(t)〉 then reads

ρ(t) =
∑

~a,~a′∈{0,1}t

|s~a〉〈s~a′ | ⊗
1
2t

(−1)z(~a)+z(~a′)|at〉〈a′t| ⊗ (B~a|φin〉〈φin|B†
~a′) . (4.25)

4Note that we read the vectors ~a in the usual way from left to right, whereas the braidwords, being

compositions of matrices (mappings), are to be read from right to left.
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We would like to know the position distribution of the walker regardless of the coin and
anyonic states. For that we need to trace the coin space and the fusion space of anyons,
resulting in

TrcoinTrfusionρ(t) =
∑

~a,~a′∈{0,1}t

|s~a〉〈s~a′ |
1
2t

(−1)z(~a)+z(~a′) 〈a′t|at〉︸ ︷︷ ︸
δat,a′t

〈φin|B†
~a′B~a|φin〉 , (4.26)

and calculate the expectation values of the position measurement, yielding the position dis-
tribution after t steps

Pt(s) = 〈s|TrcoinTrfusionρ(t)|s〉 =
1
2t

∑

~a,~a′∈{0,1}t

at=a′t
|~a|=|~a′|=H(t,s)

(−1)z(~a)+z(~a′)〈φin|B†
~a′B~a|φin〉 . (4.27)

The function |~a|, commonly called the Hamming weight, returns the number of 1’s in the
bitstring ~a. All bitstrings ending after t steps at the same position s have the same Hamming
weight

H(t, s) =
t + s

2
. (4.28)

In (4.27) we sum over all pairs of histories of the walker (we will call these pairs paths)
which satisfy certain constraints. We introduce the set

Pt,s ≡
{
(~a,~a′) | ~a,~a′ ∈ {0, 1}t, at = a′t, |~a| = |~a′| = H(t, s)

}
(4.29)

of all paths that are involved in the sum in (4.27). Each path (~a,~a′) ∈ Pt,s is weighted by the
phase factor

(−1)z(~a)+z(~a′)〈φin|B†
~a′B~a|φin〉 (4.30)

and the whole sum in (4.27) is normalized by the factor 1
2t . While the coin trace contribu-

tion (−1)z(~a)+z(~a′) is rather straightforward to calculate, care needs to be taken when one
takes the trace over anyonic degrees of freedom (i.e. the fusion space) with the contribution
〈φin|B†

~a′B~a|φin〉.

4.3.1 Evaluation of the trace over the fusion space

In principle, we could use our knowledge of the braid matrices Bj . They are given (up to
the shifting of the index j, as discussed earlier) by the expressions (3.13-3.16). Calculating
〈φin|B†

~a′B~a|φin〉 then involves only matrix multiplications. This is easy to explain, but rather
hard and time-consuming to carry out (even for a computer). At this point, the knot theory
comes onto the stage. We will use the results presented in [43] and discussed in [1] to make
a connection between the trace over the fusion space and the Jones polynomial and other
phenomena in the knot theory.
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Our goal is to calculate

〈φin|B†
~a′B~a|φin〉 = Tr

(
|φin〉〈φin|B†

~a′B~a

)
(4.31)

for a given path (~a,~a′). It is useful to represent (~a,~a′) pictorially as suggested in Fig. 4.4.
It can be shown [43] that the trace (4.31) corresponds to the Markov closure (introduced in

Figure 4.4: A diagrammatic representation of the expression |φin〉〈φin|B†
~a′B~a arising from a

generic path (~a,~a′). After taking the trace over the fusion space this diagram changes to Fig.
4.5(a).

Section 2.2, Fig. 2.11(a)) of the braid diagram on Fig. 4.4, which is, in fact, the Plat closure
(introduced in Section 2.2, Fig. 2.11(b)) of the braid B†

~a′B~a (as depicted in Fig. 4.5(a)). The
statement is

Tr
(
|φin〉〈φin|B†

~a′B~a

)
=

1
dn−1

〈(
B†

~a′B~a

)Plat
〉

(A) , (4.32)

where n is the number of pairs of anyons, 〈.〉 denotes the Kauffman bracket (recall the defini-
tion (2.14-2.16)) and d is related to the Kauffman bracket variable A as d = −A−2−A2. For
the Ising anyonic model (which is derived from the Chern-Simons theory with gauge group
SU(2)2) A = ie−i π

8 and so d =
√

2.
From Fig. 4.5(a) it is evident that the writhe w(L) (defined by (2.17)) of the link L ≡(

B†
~a′B~a

)Plat
is equal to 0, as for any path (~a,~a′) the number of positive crossings is the same
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Figure 4.5: Tracing of the diagram in Fig. 4.4 produces the link depicted in (a). It corresponds
to the Plat closure of the braid B†

~a′B~a. In the modified protocol the tracing produces the link
(b) that is the Markov closure of the braid B†

~a′B~a. In (b), the little circles on the top and
the bottom of the diagram mean that the two endpoints of each strand are identified, glued
together.

as the number of negative crossings. It is therefore easier to relate the Kauffman bracket and
the Jones polynomial of the link L. The relation (2.18) simplifies to

VL(t) = VL(A−4) = 〈L〉 (A) . (4.33)

We conclude that

Tr
(
|φin〉〈φin|B†

~a′B~a

)
= 〈φin|B†

~a′B~a|φin〉 =
1

dn−1
VL(A−4) =

1
(
√

2)n−1
VL(i) . (4.34)

You might object that we are calculating the Jones polynomial of a link without specifying
its orientation. However, as discussed in Section 2.3, the orientation of L is regarded in VL(t)
only through the writhe of L. Since, in our case, w(L) = 0, all orientations yield the same
result for VL(t).

At the special value t = i, the Jones polynomial of a link can be related to a simpler knot
invariant known as the Arf invariant, which takes values only in the set {0, 1}. The arf of
a knot K, which is a single component link, is equal to zero if K is pass equivalent5 to the
unknot (Fig. 2.1) and is equal to one if K is pass equivalent to the trefoil knot (Fig. 2.2).

5Pass equivalency of two knots is defined similarly as equivalency of knot diagrams. Besides the Reidemeister

moves, one is allowed to also use so called pass moves (see [15] for the definition and more details on this topic).

Of course, pass equivalent knots, in general, are not the same knots.
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The arf can be related to the Alexander polynomial ∆K (definition of which is given, for
example, in [16]), which can be computed in time polynomial in the number of crossings of
a braid presentation of the knot [44]. We are dealing with multicomponent links, for which
arf has a more complicated definition in terms of a knot that is related to the link [45]. In
[46] Murakami showed that

VL(i) =

{
(
√

2)#(L)−1(−1)arf(L) if L is proper
0 if L is not proper,

(4.35)

where #(L) is the number of components in the link L, and an oriented link L is said to be
proper if for each link component Lk (in the case of Fig. 4.5(a) k ∈ {...,−3,−1, w, 2, 4, ...})

∑

j 6=k

lk(Lk, Lj) is even, (4.36)

where the linking number lk(., .) has been defined earlier — (2.1). For the links that arise from
the anyonic walk the number of link components #(L) is equal to the number of initialized
pairs of anyons n. Therefore (4.34) becomes

〈φin|B†
~a′B~a|φin〉 =

{
(−1)arf(L) if L is proper
0 if L is not proper.

(4.37)

A link L is said to be totally proper if for all pairs of link components

lk(Lk, Lj) is even. (4.38)

The quantity arf(L) can be expressed in a rather convenient way provided that L is totally
proper [45]:

arf(L) =


∑

i

arf(Li) +
1
4

∑

i<j

(
λ(Li, Lj) + lk(Li, Lj)

)
+

∑

i<j<k

τ(Li, Lj , Lk)


 mod 2 ,

(4.39)
where arf(Li) is the arf of the knot Li, λ is the unoriented Sato-Levine invariant and τ is the
Milnor triple point invariant. Roughly speaking, the Sato-Levine invariant counts the number
of Whitehead links (Fig. 2.4(c)) for a pair of components and the Milnor triple counts the
number of Borromean rings (Fig. 2.4(b)) in a triple of components [45].

The formula (4.39) becomes particularly useful if we consider a modified anyonic quantum
walker protocol where, in order to perform a T -step walk, we start with 2n pairs of anyons
(n = 2dT

2 e+1), braid all right members of each pair to the right uniformly via the braid word
B, and then perform the walk just on the 2n strands corresponding to these right members
(we have already seen this procedure in Section 2.2, Fig. 2.12). That is, we transform the
initial state |φ(1, ..., 1)〉 into B|φ(1, ..., 1)〉. The links that we get from this modified protocol
are of the form

L =
(
B†B†

~a′B~aB
)Plat

=
(
B†

~a′B~a

)Markov
, (4.40)
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i.e. the braids we obtain are the same as before the modification, but the closure has changed
from Plat to Markov (Fig. 4.5). We denote the set of links coming from the new protocol by

Pt,s ≡
{(

B†
~a′B~a

)Markov
| (~a,~a′) ∈ Pt,s

}
. (4.41)

It is easy to see that all links L ∈ Pt,s (for any t and s) that are proper, are also totally
proper. (The condition (4.36) gives 0 for k = w and ”lk(Lk, Lw) is even” otherwise.) Since
there is no self-linking of the components of L, arf(Li) = 0 ∀i. The total linking number∑

i<j lk(Li, Lj) =
∑

j lk(Lw, Lj) = 0. Finally, λ(Li, Lj) = 0 ∀i, j, because any pair of link
components Li, Lj can be viewed as a link that arises from a 2-strand braid through the
Markov closure and one can show that at least 3 strands are needed to produce the Whitehead
link.6 Putting these facts together, we can simplify the expression for arf(L) (4.39):

arf(L) =
∑

i<j<k

τ(Li, Lj , Lk) mod 2 . (4.42)

4.3.2 Numerical calculation

We are interested in the spatial distribution Pt(s) of the walker after t steps. We will use the
modified protocol. First, let us denote

P(prop)
t,s ≡

{
(~a,~a′) ∈ Pt,s |

(
B†

~a′B~a

)Markov
is proper

}
(4.43)

the set of proper links arising from the paths in Pt,s. Due to (4.37) and (4.42) the formula
(4.27) reads

Pt(s) =
1
2t

∑

(~a,~a′)∈P(prop)
t,s

(−1)z(~a,~a′)+τ(~a,~a′) , (4.44)

where we denoted, for brevity, z(~a,~a′) ≡ z(~a) + z(~a′) (the coin contribution to the phase)

and τ(~a,~a′) ≡ ∑
i<j<k τ(Li, Lj , Lk) mod 2, where L =

(
B†

~a′B~a

)Markov
(the fusion degree of

freedom contribution).
The computer programme that computes Pt(s) proceeds as follows:

– For given number of steps t and position s, sum over all paths (~a,~a′) ∈ Pt,s.

–– Find whether the link L =
(
B†

~a′B~a

)Markov
is proper or not. For this purpose

compute the linking numbers lk(Lj , Lw), where Lw is the walker’s component of
L and j runs over all the other components. If there exists j such that lk(Lj , Lw)
is an odd number, add zero to the overall sum and take another path. Otherwise:

– Compute z(~a,~a′) ≡ z(~a) + z(~a′) using the formula (4.24).

6Using 2 strands, the only possible braids are of the form bk
1 , where k ∈ Z.
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– Compute τ(~a,~a′) ≡ ∑
i<j<k τ(Li, Lj , Lk) mod 2. Notice that τ(Li, Lj , Lk) = 0

if none of the indices i, j, k is w. If, for instance, j = w, take the braidword(
B†

~a′B~a

)Markov
and omit, for the moment, all braid generators Bl that don’t cause

Lw link with either Li or Lk. We are left with two braid generators (let’s denote
them Bp, Bq), which we can represent by two 2× 2 matrices.7 The computation of
τ(Li, Lw, Lk) is then only a question of multiplication of matrices (or rather a use of
their anti-commutation relations). Calculate also the other cases — τ(Lw, Lj , Lk)
and τ(Li, Lj , Lw) — and return τ(~a,~a′).

– Add (−1)z(~a,~a′)+τ(~a,~a′) to the overall sum and take another path and repeat.

The results of the numerical calculation up to 25 time steps are presented in figures 4.6
and 4.7.

The position distribution of the anyonic quantum walk with Ising anyons resembles the
position distribution of a classical random walk (Fig. 4.1). It doesn’t have the typical quantum
walk side peaks (Fig. 4.2). The plot of the variance of the anyonic walk and its comparison to
the classical and quantum cases confirms that the anyonic walk seems to loose the quadratic
speed-up of ordinary quantum walk. Rather, its variance seems to approach the classical
linear behavior.

7The matrices

Bp =

(
1 0

0 i

)
, Bq =

ei π
4√
2

(
1 −i

−i 1

)

will do the job. A nice feature is that B2
p = σ3 and B2

q = σ1.
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Figure 4.6: The position distribution of the Ising anyonic walker after 5, 15 and 25 time
steps. It resembles more the ”bell” shape of the classical walker distribution Fig. 4.1 than
the quantum walker distribution Fig. 4.2.
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Figure 4.7: Comparison of the time evolution of variances of the Ising anyonic walk, the
classical random walk and the quantum walk. The anyonic walk approaches the classical one.
The data, however, are available up to 25 time steps only.
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Chapter 5

Conclusion, discussion and outlook

We studied the quantum walk on a line with anyons. We used the non-Abelian anyons de-
scribed by the Ising anyonic model derived from the SU(2) level 2 Chern-Simons theory. We
saw that the nontrivial exchange statistics of the particles affects strikingly the position dis-
tribution Pt(s) of the walker (Fig. 4.6) — it resembles the classical random walk distribution
rather than the quantum walk distribution.

We used some knot theoretical results to simplify the expression for Pt(s), however, we
were not able to provide a closed analytical formula. That’s why we wrote a computer
programme and approached the problem numerically, obtaining the position distribution Pt(s)
up to 25 time steps. Since the complexity of the programme is exponential in the number of
steps t (the scaling seems to be roughly like 4t) the barrier of 25 steps is hard to overcome.

From Pt(s) we calculated the variance of the Ising anyonic walker. The comparison with
the classical and the quantum walk variance (Fig. 4.7) confirmed that the non-Abelian Ising
walker behaves classically (talking about the spreading of its position distribution) unlike
in the case of an Abelian anyonic walker, which behaves qualitatively same as an ordinary
quantum walker [1]. The support for the statement ”Ising walk becomes classical” comes
from the numerics. It is hard to give a good and persuading theoretical reasoning.

5.1 Why the Ising walk behaves classically

We can view the Ising walk as a ”deformation” of the usual quantum walk (the quantum
walk with trivial exchange statistics of particles). The fusion degree of freedom, represented
in the position distribution sum (4.27) by the expression (4.37), causes the quantum walk
contributions (−1)z(~a,~a′) to get multiplied by

• 0 if the link L =
(
B†

~a′B~a

)Markov
is not proper,

• 1 if L is proper and arf(L) = 0 or

• −1 if L is proper and arf(L) = 0.
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If all our links were proper and arf(L) was always zero, we would get the usual quantum
walk distributions (Fig. 4.2). What we do observe is, however, much more complicated.

Let us define the set P(mirror)
t,s ≡ {(~a,~a′) ∈ Pt,s | ~a = ~a′}. We shall call the paths from

P(mirror)
t,s the mirror paths. It is easy to see that all the links arising from the mirror paths are

proper with arf equal to zero (note that B†
~aB~a = 1) and that (−1)z(~a,~a) = (−1)z(~a)+z(~a) = 1.

Therefore we divide (4.44) into two terms:

Pt(s) =
1
2t

∑

(~a,~a′)∈P(mirror)
t,s

1

︸ ︷︷ ︸
P

(RW )
t (s)

+
1
2t

∑

(~a,~a′)∈P(prop)
t,s \P(mirror)

t,s

(−1)z(~a,~a′)+τ(~a,~a′)

︸ ︷︷ ︸
P

(ERR)
t (s)

. (5.1)

The first term, P
(RW )
t (s), is the classical walk distribution, for the cardinality of the set

P(mirror)
t,s is equal to the number of histories ~a leading after t steps to the site s. The second

term, P
(ERR)
t (s), is the difference between the Ising walk and the classical walk.1 When one

plugs (5.1) into the formula for variance (4.3), one finds that for a convenient large-t behavior
of P

(ERR)
t (s), the variance of the Ising walk approaches the classical linear relation (4.8).

More specifically (we will not do a detailed derivation though), we need to assume that

• the coin contribution (−1)z(~a,~a′) and the fusion space contribution (−1)τ(~a,~a′) are not
correlated (or at least that their correlation can be neglected), i.e. if a path (~a,~a′) is
such that (−1)τ(~a,~a′) = 0,−1 or +1, respectively, then (−1)z(~a,~a′) is equally likely to be
+1 or −1; and that

• the ratio
|P(prop)

t,s \P(mirror)
t,s |

|Pt,s\P(mirror)
t,s | of the amount of non-mirror paths constituting a proper link

over all non-mirror paths drops off as t goes to infinity fast enough (at least like 1
t2

).

The first assumption seems plausible, because of the different nature of calculating (−1)z(~a,~a′)

and (−1)τ(~a,~a′).2 The second assumption seems plausible, because for t increasing, the typical
number of link components that the walker’s component Lw links with grows and therefore it
becomes less likely that all linking numbers happen to be even. Importantly, both assumptions
are supported by the numerics. A more rigorous justification of these assumptions could be
the base for a proof that the Ising walk variance is, for large t, linear in t.

5.2 Walks with SU(2) level k anyons

As we have mentioned many times during this work, the Ising anyonic model has its ori-
gin in the SU(2)2 Chern-Simons theory. If we take a general SU(2)k anyonic model (k =
2, 3, 4, ...,+∞), we get a family of walks labeled by k. The walks are different from the

1Note that
∑

s P
(ERR)
t (s) = 0, i.e. P

(ERR)
t (s) is not a probability distribution.

2Again, however, it is hard to tackle the problem rigorously.
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Ising walk in the evaluation of the Kauffman bracket (4.32), where now A = ie
− π

2(k+2) and
d = 2 cos π

k+2 [1]. The evaluation of a walk with general k becomes more complicated, be-
cause we can no longer express the Jones polynomial as the Arf invariant to simplify the
calculations.

It can be shown that for k = +∞ the anyonic walk becomes a standard quantum walk with
the variance growing quadratically. We argued that for k = 2 the variance of the Ising walk
(for a large number of steps) behaves classically, i.e. linearly. Between k = 2 and k = +∞
we expect to observe ”something in between”, some transition. The nature of this transition
is, at the moment, an open question.
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