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Chapter 1

Introduction

It is commonly accepted in physics that there are two kinds of particles in the three-

dimensional space — bosons and fermions. In statistical physics, bosons obey the Bose-

Einstein distribution law, while fermions are distributed among energy levels according

to the Fermi-Dirac distribution. In quantum mechanics, they differ by the phase factor

that the global wave function of a many-particle system acquires when two particles are

exchanged. The phase factor is +1 for bosons and −1 for fermions.

The key concept in these considerations is the principle of indistinguishability of iden-

tical particles. No quantum mechanical observable can distinguish between two particle

configurations that differ only by a permutation of identical particles. But what does the

word “permutation” or “exchange” of identical particles actually mean? And how to un-

derstand the notion of “identicalness”, anyway. In 1977, Leinaas and Myrheim [1] took

these questions seriously and found that whereas in three dimensions, indeed, only bosons

and fermions should exist, the two-dimensional space offers a whole continuous family of

possible quantum statistics. In two dimensions, one can consistently assign any phase fac-

tor eiα to reflect an exchange of two identical particles. Planar particles with these exotic

statistics were named anyons by Frank Wilczek.

We dedicate the Chapter 2 to explaining the ideas of Leinaas and Myrheim and to

formulating the basics of quantum mechanical description of anyons. The role of anyons

in statistical physics is also discussed. There have been several attempts to generalize the

bosonic and fermionic statistics, i.e. the number of particles that are allowed to occupy one

quantum state. We present the work of Haldane [2], who generalized the Pauli exclusion

principle in the way that the maximum number of particles that can occupy one quantum

state is anywhere between 1 (fermions) and ∞ (bosons). This so called fractional statistics

is, however, found to be incompatible with anyons defined through the exotic exchange
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phase eiα when confronted with thermodynamical results for an ideal gas of anyons [3].

In Chapter 3, the anyons are explored from the experimental point of view. We discuss

how a two-dimensional system can be realized in practice and review the quantum Hall

effect to show that the quasiparticles that appear in the fractional quantum Hall system

exhibit exotic exchange statistics, i.e. that they are anyons [4]. Finally, we briefly overview

the high-temperature superconductivity, a yet unexplained phenomenon, in which anyons

were believed to take place as well. The experimental results, however, indicate that anyons

are currently observed only in the fractional quantum Hall effect.

In the last chapter, Chapter 4, we wander into the field of topological quantum compu-

tation. We introduce the Kitaev’s toric code [5], which is the most renowned topological

quantum error correcting code. It can serve as a quantum memory, robustness of which is

achieved on the physical (hardware) level. Anyonic excitations occur on the toric code as

local errors and if they propagate far enough, they cause logical errors, i.e. the quantum

information, stored in the quantum memory, is lost. Our objective is to investigate how

the nontrivial exchange statistics affects the continuous-time quantum walk of anyons on

the toric code. Especially, we would like to know whether a certain type of disorder in the

system causes Anderson localization [6] to take place as argued by Wootton and Pachos

[7].
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Chapter 2

Genesis and the basic properties of

anyons

At the beginning of this chapter we focus on the theory of identical particles in a general

spatial dimension d. We show how the topology of configuration spaces of systems of

identical particles depend on the spatial dimension and what consequences a nontrivial

topology, expressed in terms of the fundamental group of a configuration space, has for the

concept of quantum statistics. Whereas in three and more dimensions only bosonic and

fermionic exchange statistics exist, in a two dimensional space the infinite connectedness

of the configuration space allows for much greater diversity. The phase factor that a wave

function acquires upon an exchange of two particles doesn’t have to be merely the bosonic

+1 or the fermionic −1, but can be, in principle, an arbitrary complex unit. The particles

in two dimensions are called anyons.

In the next part we formulate the Lagrangian and the Hamiltonian that incorporate the

general anyonic statistics. Based on the solution of the two-anyon problem, we argue that

free anyons (meaning without a direct force between them) exhibit a repulsive interaction

(similar in nature, but weaker than fermions) arising purely from their exchange statistics.

In statistical mechanics, bosons and fermions are described by distinct statistical distri-

butions over the energy states that they obey in thermal equilibrium — Bose-Einstein and

Fermi-Dirac distributions. The last section presents a generalization of these two possibil-

ities, the fractional statistics. The connection between anyons and the fractional statistics

is, however, not as straightforward. In fact, those two seem to be rather different concepts

— anyons don’t obey the fractional statistics.
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2.1 Quantum statistics in d dimensions

Before we come to a proper discussion about the statistics, it is worth clarifying what

exactly one means by quantum statistics. In most textbooks on statistical mechanics,

the term “quantum statistics” refers to the phase picked up by a wave function when

two identical particles are interchanged, i.e. under the permutation of the particles. One

usually writes

ψ(x2,x1) = eiαψ(x1,x2) . (2.1)

But this is slightly misleading and has been correctly criticized in literature [8]. If the

particles are strictly identical then the word “permutation” has no physical meaning since

a given configuration and the one obtained by the permutation of particle coordinates are

merely two different ways of describing the same particle configuration. The two quantities

in equation (2.1) have no separate meaning and the equation therefore at most reflects a

redundancy in the notation.

The origin of the trouble lies in the introduction of the particle indices which brings ele-

ments of non-observable character into the theory and makes the discussion more obscure.

The term quantum statistics actually refers to the phase that arises when two particles are

adiabatically transported giving rise to the exchange. The principle of indistinguishability

of identical particles plays the central role and it has, as we shall see, profound physical

consequences.

2.1.1 Configuration spaces for identical particles

Following Khare [3] and Leinaas and Myrheim [1], let us enquire about the configuration

space of a system of identical particles. In statistical mechanics one normally considers the

full phase space, but it turns out that the configuration space is enough for this discussion.

Suppose one particle space is X. Then what is the configuration space of N identical

particles? The naive answer is XN , which, even though is true locally, is not correct

globally. Since the particles are strictly identical, there is no distinction between the

points in XN that differ only in the ordering of the particle coordinates.

For example, take the point

x = (x1,x2, . . . , xN) (2.2)

in XN , where xi ∈ X for i = 1, 2, . . . , N . Now consider another point x′ in XN which is

obtained from x by the permutation p of the particle indices, i.e.

x′ = p(x) = (xp(1), . . . , xp(N)) . (2.3)

6



Clearly, both x and x′ describe the same physical configuration of the system. Thus the

true configuration space of the N -particle system is not the Cartesian product XN , but

it is the quotient space XN/SN which is obtained by identifying the points of XN that

represent the same physical configuration, i.e. it is obtained by “dividing out” the action

of the symmetric (or permutation) group SN . Note that SN is a discrete and indeed finite

transformation group acting in XN . As a result, the space XN/SN is locally diffeomorphic

to XN except at the points

∆ =
{
(x1, . . . , xN) ∈ XN | xi = xj for some i 6= j

}
, (2.4)

where two or more particles occupy the same position in X. For convenience, we remove

the points of ∆ from our configuration space1, i.e. the configuration space of N identical

particles becomes

(XN\∆)/SN . (2.5)

Since the spaces XN\∆ and (XN\∆)/SN are locally diffeomorphic, they are equivalent on

the classical level. However, on the quantum level global properties of the configuration

space are of deep physical significance as we shall see later when we will path-integral

quantize the system of identical particles.

Let us now study in detail the configuration space (XN\∆)/SN under the assumption

that the one particle configuration space X is the d–dimensional Euclidean space Rd,

d = 1, 2, 3, . . .. Let us take, for simplicity, the two particle case (N = 2), i.e. the space

((Rd × Rd)\∆)/S2. Using the center-of-mass coordinate

xc.m. =
x1 + x2

2
(2.6)

and the relative coordinate

xr = x2 − x1 , (2.7)

where x1,x2 ∈ Rd are the coordinates of the individual particles, we can see that removing

the set of coincidence ∆ from our configuration space is expressed by the condition xr 6= 0.

The identification of the points (x1,x2) and (x2,x1) corresponds to identifying the points

(xc.m., xr) and (xc.m.,−xr). Therefore the configuration space of two identical particles

reads

((Rd × Rd)\∆)/S2 = Rd × (Sd−1/S2)× (0, +∞) , (2.8)

1Whether or not two particles can simultaneously occupy the same position is not a question we wish
to settle here. We are only saying that by excluding the points of coincidence from the configuration space,
the resulting topology leads to meaningful physical results without any further assumptions.
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where Sd−1/S2 is the (d− 1)–dimensional sphere with diametrically opposite points iden-

tified, i.e in fact the real projective space RP d−1.

To reveal the global topological properties of the configuration spaces Rd× (Sd−1/S2)×
(0, +∞) of two identical particles, we will find their fundamental group2 π1 for any di-

mension d. (The fundamental group plays a key role in the path integral quantization in

topologically non-trivial spaces.) We make use of the fact that for any two topological

spaces A and B

π1(A×B) = π1(A)⊗ π1(B) , (2.9)

where ”×” is the Cartesian product of two sets while ”⊗” stands for the direct product of

groups. Thus

π1

(
Rd × (Sd−1/S2)× (0, +∞)

)
= π1

(
Rd

)⊗ π1

(
Sd−1/S2

)⊗ π1 ((0, +∞)) = π1

(
Sd−1/S2

)
,

(2.10)

since both Rd and (0, +∞) are simply connected topological spaces.

There are several possibilities (follow the figure 2.1).

Figure 2.1: (a) The topological space Sd−1/S2 for d ≥ 3 is doubly connected, i.e.

π1

(
Sd−1/S2

)
= Z2. The path γ represents homotopically nontrivial paths; γ2 is, how-

ever, homotopically trivial. (b) The space S1/S2 is infinitely connected, π1 (S1/S2) = Z.

The fundamental group is generated by the path α. (c) The space S0/S2 is trivial (it is a

single point), thus its fundamental group is trivial as well.

For d ≥ 3:

π1

(
Sd−1/S2

)
= Z2 . (2.11)

2For an introduction into this topic see for example [9].
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The only path (up to a homotopy) that is not contractible to a single point is the one that

terminates at the point of Sd−1 antipodal to the point of its origin. (In Figure 2.1(a) such

a path is denoted γ.) If, however, we travel this path twice then the resulting path γ · γ
(γ followed by γ) can be continuously shrunk to a point as it forms a closed path on the

sphere Sd−1. Notice that γ represents one exchange of the two identical particles and γ · γ
represents two such exchanges. If the two particles were not identical, the fundamental

group would be the one of a (d− 1)—dimensional sphere, i.e. it would be trivial.

For d = 2:

π1

(
S1/S2

)
= Z . (2.12)

The path α (see Fig.2.1(b)) is not contractible to a point and paths of the form αn, n ∈ Z
are all homotopy inequivalent. The configuration space of two identical particles in a plane

is multiply connected and therefore will admit a richer exchange statistics. If the two

particles were not identical, the fundamental group would be the one of a circle, i.e. again

Z.

For d = 1:

π1

(
S0/S2

)
is trivial. (2.13)

This is an obvious result since we are computing the fundamental group of a single point.

If the two particles were not identical, their configuration space would be disconnected.

It is problematic to define the exchange statistics in one dimension as particles cannot

be exchanged without their passing through one another. As a result, the intrinsic statistics

is inextricably mixed up with local interactions.

In the general problem of N identical particles one has to find the fundamental group

of the space ((Rd)N\∆)/SN . This problem was solved in [10, 11] with the results

π1

(
((Rd)N\∆)/SN

)
= BN for d = 2 , (2.14)

π1

(
((Rd)N\∆)/SN

)
= SN for d ≥ 3 , (2.15)

where BN is the braid group of N objects (strings) while SN is the permutation group. It

turns out that whereas there are only two one dimensional representations of the permu-

tation group SN (the trivial one and the alternating one, corresponding respectively to the

bosonic and the fermionic statistics), the braid group BN admits a continuous family of

one dimensional representations. A brief braid group introduction is given in Appendix A.

2.1.2 Path integral quantization in two dimensions

We have seen that whereas the configuration space of N identical particles in three and

higher space dimensions is doubly connected, it is multiply connected in two dimensions.
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This fact has profound consequences when we quantize the system of identical particles.

To quantize a system with topologically nontrivial configuration space it is convenient to

use the path integral formulation.

According to Feynman [12], the transition amplitude from the configuration |xi〉 at

time ti to the configuration |xf〉 at tf is given by

〈xf , tf |xi, ti〉 = N
∑

x(t)

exp

(
i

~
S[x(t)]

)
, (2.16)

where N is a normalization constant, the sum is taken over all paths in the configuration

space x(t), t ∈ [ti, tf ] with x(ti) = xi and x(tf ) = xf , and the action S is evaluated along

a path x(t) through the prescription

S[x(t)] =

∫ tf

ti

L(x(t), ẋ(t))dt . (2.17)

In configuration spaces with nontrivial fundamental group π1 the prescription (2.16)

generalizes, according to DeWitt [13], to the form

〈xf , tf |xi, ti〉 = N
∑

[γ]∈π1(X)

χ([γ])
∑

x(t)∈[γ]

exp

(
i

~
S[x(t)]

)
, (2.18)

i.e. each path is weighted by an extra factor χ([γ]), which depends on the homotopy class

that the path belongs to. The factors χ([γ]) form a scalar3 unitary representation of the

fundamental group of the configuration space,

χ([γ1][γ2]) = χ([γ1])χ([γ2]) . (2.19)

In three of higher spatial dimensions there are two scalar representations of the funda-

mental group SN . An exchange of two identical particles can introduce a factor of either

+1 or −1 for bosons or fermions, respectively.

There are more possibilities in two spatial dimensions, where the fundamental group of

the configuration space is the braid group BN . In fact, it is possible to consistently assign

any value

χ([γ]) = eiα , α ∈ [0, 2π] (2.20)

to the phase arising due to the exchange of two particles. Particles in two dimensional

space are called anyons and their characterization α is called the exchange parameter.

Bosons and fermions are special cases of anyons with α = 0 and α = π, respectively.

3In more general theories also higher-dimensional representations are considered.
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One can generalize the concept of anyons for the case of multicomponent wave func-

tions. The exchange parameter is then allowed to take values in unitary matrices, which

carry higher dimensional representations of the braid group. Anyons whose prefactor are

noncommutative are called non-Abelian. However, we shall only encounter so called Abelian

anyons with the exchange parameter a genuine complex unit eiα.

There is a connection between the exchange statistics of two (or more) particles and

the spin of an individual particle — the spin-statistics theorem.4 It states that bosons,

whose global wave function acquires +1 when two particles are exchanged, have integer

spin, whereas fermions, whose global wave function acquires −1 when two particles are

exchanged, have half-integer spin. The restriction on the values of spin is a consequence

of the commutation relations

[Si, Sj] = i~εijkSk (2.21)

for the spin operators Sx, Sy and Sz in three dimensions. In two dimensions, however,

there is only one direction of rotation and therefore only one spin operator S. There is no

restriction on the eigenvalues of S as the algebra generated by S is commutative. This is

in consistency with the fact that in two dimensions there are no restrictions on the possible

values of the statistical exchange phase eiα.

2.2 Quantum formalism for anyons

We will formulate the basics of quantum mechanics of anyons and later examine the two-

body problem of free anyons.

The Lagrangian for N ordinary identical particles with mass M and an interaction

potential V is

L0 =
M

2

N∑
j=1

ẋ2
j − V (x1, . . . , xN) . (2.22)

To convert the ordinary particles into anyons we introduce the “statistical interaction”

term and obtain the anyonic Lagrangian

L = L0 +
α~
π

∑
r>s

d

dt
θ(xr − xs) , (2.23)

where α is the anyonic exchange parameter and θ(xr−xs) is the angle between the vector

xr − xs and the x axis.

4It is proved in the framework of quantum field theory [14]. In quantum mechanics, the spin-statistics
“theorem” must be postulated.
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The role of the statistical interaction term is most easily explained within the path

integral formulation. For simplicity, let us consider two particles evolving from the initial

configuration |xi
1,x

i
2〉 at time ti to the final configuration |xf

1 ,x
f
2〉 at time tf and calculate

the action S ≡ S[x1(t),x2(t)] along a particular path (x1(t),x2(t)),

S =

∫ tf

ti

L0(x1(t),x2(t))dt +
α~
π

∆θ (2.24)

with ∆θ ≡ θ(xf
2 −xf

1)− θ(xi
2−xi

1). The contribution to the path integral associated with

this trajectory is the phase

e
i
~S = eiα∆θ

π e
i
~

∫
L0dt . (2.25)

We can see that when the angle θ(x2−x1) changes by ∆θ = π, i.e. when the two particles

are interchanged, the extra phase eiα reproduces the exchange phase between the anyons

with the exchange parameter α (2.20).

Comments are in order. (1) Since the statistical interaction term

α~
π

∑
r>s

d

dt
θ(xr − xs) (2.26)

is a total time derivative, it does not contribute to classical equations of motion. Anyonic

statistics is purely quantum effect with no classical analogue. (2) Anyons violate discrete

symmetries of parity P : (x, y) → (x,−y) and time reversal T : t → −t as

dθ

dt

P→ −dθ

dt
,

dθ

dt

T→ −dθ

dt
. (2.27)

In order to proceed from the Lagrangian (2.23) to the Hamilton’s formalism we’ll find

the canonical momenta pm = ∂L
∂ẋm

. First, we note that

dθ(x)

dt
=

d

dt

(
arctan

x2

x1

)
=

ẋ2x1 − ẋ1x2

‖x‖2
= −εjk

ẋjxk

‖x‖2
(2.28)

so that
∂

∂ẋj
m

∑
r>s

d

dt
θ(xr − xs) = −

∑

s 6=m

εjk
xk

m − xk
s

‖xm − xs‖2
. (2.29)

Hence, the canonical momenta are

pm =
∂L

∂ẋm

= M ẋm +
α~
π

∂

∂ẋm

∑
r>s

d

dt
θ(xr − xs) = M ẋm + eC(xm) , (2.30)

where

Cj(xm) =
Φ

2π

∑
s

∂jθ(xm − xs) = − Φ

2π

∑

s6=m

εjk
xk

m − xk
s

‖xm − xs‖2
(2.31)
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is the Chern-Simons gauge potential and the constants e and Φ, satisfying eΦ = 2α~,
are introduced to emphasize the analogy between C(x) and the electromagnetic potential

A(x).5 Yet, the Chern-Simons potential C(x) is only a fictitious, purely mathematical

device that realizes the anyonic statistics.

The Hamiltonian is given by the Legendre transform,

H =
N∑

m=1

pm · ẋm − L =
1

2M

N∑
m=1

(pm − eC(xm))2 + V (x1, . . . , xN) . (2.32)

We may regard anyons as ordinary bosons carrying the Chern-Simons charge e and flux Φ.

2.2.1 Two-anyon problem

Let us consider an example of two noninteracting anyons. Noninteracting in the sense that

there is no potential term. On the other hand, being anyons, they will influence each other

by the statistical interaction.

The Hamiltonian is given by

H =
1

2M
(p1 − eC(x1))

2 +
1

2M
(p2 − eC(x2))

2 (2.33)

with

Cj(x1) = − Φ

2π
εjk

xk
1 − xk

2

‖x1 − x2‖2
= −Cj(x2) . (2.34)

In the center-of-mass coordinate system

R =
x1 + x2

2
, r = x1 − x2 (2.35)

the momentum operators p1 = −i~ ∂
∂x1

and p2 = −i~ ∂
∂x2

read

p1 =
pR

2
+ pr , p2 =

pR

2
− pr (2.36)

and the Hamiltonian separates into two parts

H =
1

2M

(pR

2
+ pr − eC(x1)

)2

+
1

2M

(pR

2
− pr + eC(x1)

)2

=
p2

R

4M
+

(pr − eC(x1))
2

M
≡ HR + Hr . (2.37)

5 In electromagnetism, a particle with charge q having passed around an infinitely long solenoid with
magnetic flux φ experiences a phase shift

e
i
~ q

∮
Adx = e

i
~ qφ .

It is known as the Aharonov-Bohm effect [15].
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The center-of-mass Hamiltonian HR, which is independent of the statistical parameter α,

describes a free particle and its eigenstates are plane waves.

We analyze the relative Hamiltonian Hr in polar coordinates. Since

C(x1) =
Φ

2π
∇θ(r) =

Φ

2π

1

r
(− sin θ, cos θ) , (2.38)

after some calculations we arrive at

Hr = −~
2

M

[
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

(
∂

∂θ
+ i

α

π

)2
]

. (2.39)

Using the factorization anzatz for the wave function, ψ(r, θ) = A(θ)B(r), the angular

equation (
∂

∂θ
+ i

α

π

)2

A(θ) = λA(θ) (2.40)

is obtained. Since we regard the two anyons as bosons interacting via the statistical

interaction, the boundary condition on the eigenfunction A(θ) is

A(θ + π) = A(θ) , (2.41)

hence

Al(θ) = eilθ , l = 0,±2,±4, . . . , λl = −
(
l +

α

π

)2

. (2.42)

The eigenvalues λl are non-degenerate except for two cases: α = 0 (bosons) and α = π

(fermions).

On substituting Al(θ) to the time-independent Schrödinger equation Hrψ = Eψ we

obtain the radial equation

−~
2

M

[
1

r

d

dr

(
r

d

dr

)
+

λl

r2

]
B(r) = EB(r) . (2.43)

Solutions to this equation are the Bessel functions of the first kind,

B(r) = J√−λl
(kr) = J|l+α

π |(kr) , E =
k2~2

M
, (2.44)

which behave at r → 0 as

J|l+α
π |(kr) ≈ 1

Γ
(∣∣l + α

π

∣∣ + 1
)

(
kr

2

)|l+α
π |
∼ r|l+α

π | . (2.45)

We observe that two particles can come close together, for the wave function this means

|ψ(r → 0, θ)|2 = |B(r → 0)|2 6= 0 , (2.46)

14



only if α = 0 (bosons) and l = 0. For α > 0 there is a centrifugal barrier that prevents

the particles from occupying the same position. Apart from bosons, all other particles

(0 < α ≤ π) satisfy some kind of Pauli exclusion principle. The repulsion grows with

increasing exchange parameter α. In this sense, anyons behave like bosons with extra

repulsion interaction or fermions with extra attractive interaction.

Quantum mechanics of interacting anyons has been studied in literature [3]. While two-

anyon problems (oscillator potential, Coulomb field) can be solved, troubles arise when we

consider three and more anyons, since we can no longer take advantage of the center of

mass separation and the polar coordinate system.

2.3 Fractional statistics

In statistical mechanics, the particle statistics is described by the Pauli exclusion principle

rather than by a phase factor that the global wave function acquires upon an exchange of

particles. The Bose-Einstein statistics allows any number of particles (bosons) to occupy

a given quantum state, whereas the Fermi-Dirac statistics allows only zero or one particle

(fermions). These notions of exclusion statistics can be introduced in any spatial dimension

(for example, two).

In 1991 Haldane [2] introduced the concept of fractional exclusion statistics generalizing

the Pauli exclusion principle. He defined the statistics g of a particle by

g =
dN − dN+∆N

∆N
, (2.47)

where N is the number of particles and dN is the dimension of one-particle Hilbert space

when other N − 1 particles are kept fixed. In particular, for ∆N = 1 we can see that

g = dN − dN+1 denotes the number of quantum states that are filled by one extra particle

in the system. Here, however, g is not required to be an integer. For bosons gB = 0, for

fermions gF = 1 and for anyons (if applicable) we would expect something in between.

On the basis of (2.47) Haldane proposed a formula for the number of many-body states

of N identical particles occupying a group of p quantum states,

W =
[p + (N − 1)(1− g)]!

N ![p− gN − (1− g)]!
. (2.48)

The factorials, of course, need to be considered in a generalized sense of Γ functions. For

bosons and fermions this reproduces the well known formulas

WB =
(p + N − 1)!

N !(p− 1)!
and WF =

p!

N !(p−N)!
. (2.49)

15



When there are several p-fold degenerate energy levels εj with nj particles in each of

them, the number of microstates of the system

Ω =
∏

j

[p + (nj − 1)(1− g)]!

nj![p− gnj − (1− g)]!
(2.50)

determines the statistical entropy

S = kB ln Ω . (2.51)

Maximizing the entropy S as a function of the occupation numbers nj and with the con-

straints on the total energy and the number of particles,

E =
∑

j

njεj , N =
∑

j

nj , (2.52)

we obtain the least biased occupation numbers n̄j =
nj

p
, i.e. the average number of particles

occupying one quantum state in the j-th energy level. The calculation is done in [3], chapter

5, with the result

n̄j =
1

ω(ξj) + g
, (2.53)

where ξj ≡ eβ(εj−µ), β = 1
kT

is the inverse temperature, µ is the chemical potential and the

function ω(ξj) satisfies the equation

ω(ξj)
g
(
1 + ω(ξj)

)1−g
= ξj . (2.54)

For the particular cases g = 0 and g = 1 we immediately recover the familiar formulas for

Bose-Einstein and Fermi-Dirac distributions, respectively.

At zero temperature (T = 0, β →∞, µ → µ0) the parameters ξj reduce to

εj > µ0 : ξj = eβ(εj−µ0) →∞ ⇒ ω(ξj) →∞ ,

εj < µ0 : ξj = eβ(εj−µ0) → 0 ⇒ ω(ξj) → 0 (2.55)

and hence

n̄j =

{
0 , εj > µ0

1
g

, εj < µ0 .
(2.56)

We can see that particles obeying the fractional exclusion statistics exhibit a Fermi surface

under which 1
g

particles on average occupy one quantum state.

Now, the obvious question is whether the particles obeying the fractional exclusion

statistics are indeed the anyons that we defined in (2.20) through the nontrivial phase ac-

quired upon an exchange of two particles. One can compare the thermodynamic properties
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of an ideal gas of particles obeying the fractional exclusion statistics and a gas of particles

interacting through the statistical interaction (2.26). In the latter case, the virial expansion

is used. Although only the second virial coefficient is completely known and the third one

is known only partially, the conclusion is that an ideal anyon gas is not an ideal gas of par-

ticles obeying the fractional exclusion statistics. There have been several other attempts

to introduce the fractional statistics, but non of them agrees with the thermodynamics of

anyons. See [3] for the analysis.
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Chapter 3

Anyons in experiments

The concept of anyons, these somewhat exotically behaving particles, sounds quite attrac-

tive. Sooner or later, however, one should ask the question whether his new ambitious

theory has anything to do with reality. Finding a physical implementation of the new

ideas can provide even stronger motivation and encourage further research. In this chapter

we will talk about two experiments relevant for the physics of anyons. Firstly and mainly,

we will discuss the quantum Hall effect which is widely agreed on proving the existence of

anyons in real physical systems. In the second part we will briefly review the role of anyons

in the theory of high-temperature superconductivity. Although it has been suggested that

anyons could provide a mechanism for this yet unexplained phenomenon, experimental

results indicate that they are, unfortunately, not involved.

3.1 Quantum Hall effect

In this section we will overview some aspects of the monolayer quantum Hall effect (QHE).1

The QHE is of two kinds — the integer QHE and the fractional QHE. Especially the frac-

tional QHE is interesting for us, because it supports quasiparticles with anyonic statistics.

Suppose electrons are moving in the xy plane in a perpendicular magnetic field B =

(0, 0,−B), B > 0, and suppose their velocity is constant and pointing in the x direction,

v = (vx, 0, 0). The electrons feel the Lorentz force and their motion is described by the

equation

M v̇ = −e(E + v ×B) , (3.1)

1There are also other types of quantum Hall effects (bilayer QHE, QHE in graphene). See a monograph
about quantum Hall effects and their aspects written by Z. F. Ezawa [16].

18



Figure 3.1: Electron gas of the density ρ0 is moving in the xy plane with a constant velocity

v = (vx, 0, 0). Perpendicular magnetic field B = (0, 0,−B), B > 0, generates the Lorentz

force that is compensated by the electric field E = (0, Ey, 0) = (0,−vxB, 0).

where M is the mass of an electron an −e is its charge. The requirement of constancy of

the velocity v determines the electric field

E = −v ×B , i.e. Ex = 0 and Ey = −vxB . (3.2)

In a homogeneous electron gas with the areal density ρ0 the current density is j = −eρ0v,

hence we have the relation

jx =
eρ0

B
Ey . (3.3)

The ratio between Ey and jx is the Hall resistivity

Rxy ≡ Ey

jx

=
B

eρ0

=
1

ν

2π~
e2

, (3.4)

where ν = 2π~ρ0

eB
is called the filling factor for reasons that will be settled later.

While classically, at a fixed density ρ0, the Hall resistivity Rxy is a linear function of

the perpendicular magnetic field strength B, experimentally, at low temperatures and high

B, one finds that Rxy develops a series of plateaux (illustrated schematically in Fig.3.2),

where it is constant around particular ”magic” values of the filling factors ν. This is known

as the quantum Hall effect. The integer QHE (at ν = integer) was discovered by Klitzing

[17] in 1980, a century after the discovery of Edwin Hall [18]. The fractional QHE (at

ν = n/m with integer n and odd integer m) was discovered by Tsui, Störmer and Gossard

[19] in 1982.

3.1.1 Electron gas confined to two dimensions

We consider a system where electrons are trapped in a thin layer (∼ 10nm) between a

semiconductor and an insulator of between two semiconductors. The electrons are free
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Figure 3.2: QHE is illustrated schematically. At a fixed density ρ0 of the electron gas, the

classical theory predicts a linear dependence of the Hall resistivity Rxy on the magnetic field

strength B (the thin line). Experimental results at low temperatures and strong magnetic

fields, however, form a series of plateaux (the thick line). The values of Rxy, where the

plateaux occur, are universal — they don’t depend on properties of the sample.

to move in the x and y direction. The trap in the z direction is realized by a narrow

potential well V (z) and with a help of sufficiently low temperature. It is then a good

approximation that the electrons are confined to the ground state of the potential well and

the 3-dimensional system is reduced to the 2-dimensional one. The wave function of one

electron is of the form

ψ(x, y, z) = ψ(x)ψ0(z) , (3.5)

where x = (x, y). One only has to deal with the wave function ψ(x) of the planar system,

since ψ0(z) is the fixed ground state of the potential well.

It is instructive to approximate V (z) by the δ-function potential: V (z) = −V0δ(z),

V0 > 0. The one dimensional Schrödinger equation is easily solved and the only bound

state is given by

ψ0(z) =
√

βe−β|z| , E0 = −~
2β2

2M
, (3.6)

where β = MV0

~2 and M is the electron mass. For sufficiently deep potential well (β →∞)

the particle is confined at z = 0.

If we decide to model the well as infinitely deep but of a finite width L, the bound state

energies are

En =
~2π2(n + 1)2

2ML2
, n ≥ 0 . (3.7)
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Since the energy gap E1 −E0 = 3~2π2

2ML2 increases as the width L → 0, the electrons are well

confined to the ground state for small L and sufficiently low temperatures.

The Coulomb interaction between electrons in three dimensions is given by

HC =
1

2

∫
d3xd3x′

ρe(x, z)ρe(x
′, z′)

4πε
√

(x− x′)2 + (z − z′)2
, (3.8)

where ρe(x, z) is the electric charge density. For planar electrons we approximate the

charge density as

ρe(x, z) = −eδ(z)ρ(x) , (3.9)

with the particle density ρ(x) =
∑N

r=1 δ(2)(x−xr), where x1, . . . , xN denote the positions

of the electrons in the plane. The Coulomb energy term then reads

HC =
e2

2

∫
d2xd2x′

ρ(x)ρ(x′)
4πε|x− x′| . (3.10)

The total Hamiltonian

H = HC + HK + HZ (3.11)

consists of the Coulomb term HC ; the kinetic term

HK =
1

2M

N∑
r=1

(−i~∇r + eAext(xr)
)2

, (3.12)

where M is the electron mass and Aext(x) is the external electromagnetic potential; and

the Zeeman term

HZ = −∆Z

2

∫
d2x

(
ρ↑(x)− ρ↓(x)

)
, (3.13)

where ∆Z ≡ |gµBB| is the Zeeman gap, ρ↑(x) and ρ↓(x) are the number densities of

up-spin and down-spin electrons.

To reveal the essence of the QH system, we will consider the spin-frozen theory, where

the Zeeman gap is very large and all spins are frozen into their polarized states. The spin-

full theory is discussed in [16]. It supports topological solitons called skyrmions, which are

solutions to the corresponding nonlinear sigma model.

3.1.2 Planar electron in a magnetic field

For the time being, we will neglect the interaction due to the Coulomb term HC to study

the basic nature of planar electrons. The one electron Hamiltonian is given by

H = HK =
1

2M

(
(−i~∂x + eAext

x )2 + (−i~∂y + eAext
y )2

)
, (3.14)
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where the vector potential Aext(x) corresponds to the external magnetic field B = (0, 0,−B),

0 < B = −εjk∂jA
ext
k = ∂yA

ext
x − ∂xA

ext
y . (3.15)

The covariant momenta

Px ≡ −i~∂x + eAext
x ,

Py ≡ −i~∂y + eAext
y (3.16)

and the newly defined guiding center coordinates

X ≡ x +
1

eB
Py ,

Y ≡ y − 1

eB
Px (3.17)

satisfy the commutation relations

[X, Px] = [X,Py] = [Y, Px] = [Y, Py] = 0 . (3.18)

This follow from the commutation relations

[X, Y ] = − i~
eB

= −i`2
B , [Px, Py] = i~eB = i

~2

`2
B

, (3.19)

where we have introduced the magnetic length

`B =

√
~

eB
, (3.20)

which gives the fundamental scale to the QH system. The coordinate x = (x, y) of an

electron is decomposed as x = X + R into the guiding center coordinate X = (X, Y ) and

the relative coordinate

R = (Rx, Ry) =

(
− 1

eB
Py,

1

eB
Px

)
. (3.21)

The guiding center coordinate X is constant in time as follows from the Heisenberg

equations of motion (recall that H = 1
2M

(P 2
x + P 2

y ))

dX

dt
=

1

i~
[X,H] = 0 ,

dY

dt
=

1

i~
[Y, H] = 0 . (3.22)
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The relative coordinate R describes the motion around the guiding center. The corre-

sponding Heisenberg equations

dRx

dt
=

1

i~
[Rx, H] =

1

i~
1

eB

1

2M
[−Py, P

2
x + P 2

y ] =
1

M
Px =

eB

M
Ry ,

dRy

dt
= −eB

M
Rx (3.23)

are most easily solved if we notice that they are equivalent to a single equation

d

dt
(Rx + iRy) = ωcRy − iωcRx = −iωc(Rx + iRy) , (3.24)

where

ωc =
eB

M
=

~
M`2

B

(3.25)

is the cyclotron frequency. We can integrate (3.24),

(Rx + iRy)(t) = (R0
x + iR0

y)e
−iωct , (3.26)

i.e.

Rx(t) = R0
x cos ωct + R0

y sin ωct ,

Ry(t) = R0
y cos ωct−R0

x sin ωct , (3.27)

where R0
x and R0

y are the integration constants. The relative coordinate R makes cyclotron

motion with the cyclotron frequency ωc.

It proves useful to introduce two pairs of operators

a ≡ `B√
2~

(Px + iPy) , a† ≡ `B√
2~

(Px − iPy)

b ≡ 1√
2`B

(X − iY ) , b† ≡ 1√
2`B

(X + iY ) , (3.28)

obeying

[
a, a†

]
=

[
b, b†

]
= 1 ,

[a, b] =
[
a†, b

]
= 0 , (3.29)

which can be regarded as creation (a† and b†) and annihilation (a and b) operators of two

independent harmonic oscillators. We may define the Fock vacuum |0〉 by requiring

a|0〉 = 0 , b|0〉 = 0 (3.30)

23



and construct the Fock states upon it,

|N, n〉 =

√
1

N !n!

(
a†

)N (
b†

)n |0〉 . (3.31)

In terms of the ladder operators a, a† the Hamiltonian (3.14) is rewritten as

H =
1

2M
(P 2

x + P 2
y ) =

1

2M

(
(Px − iPy)(Px + iPy)− i[Px, Py]

)

=
1

2M

(
2~2

`2
B

a†a +
~2

`2
B

)
= ~ωc

(
a†a +

1

2

)
. (3.32)

The energy levels, called the Landau levels, are found in the same way as for the

harmonic oscillator:

EN = ~ωc

(
N +

1

2

)
(3.33)

with the eigenstates |N, n〉,2 where n corresponds to the degeneracy within a Landau level.

A state |N, n〉 is called the Landau site and due to the Pauli exclusion principle it can

accommodate one electron in the spin-less theory and two electrons in the theory with

spins.

At this stage we choose the gauge, i.e. the electromagnetic potential Aext(x) such that

B = ∂yA
ext
x − ∂xA

ext
y . We will work in the symmetric gauge

Aext
x =

1

2
By , Aext

y = −1

2
Bx , (3.34)

in which the covariant momentum P and the guiding center X take the concrete form

Px = −i~
∂

∂x
+

eB

2
y , Py = −i~

∂

∂y
− eB

2
x ,

X =
1

2
x− i~

eB

∂

∂y
, Y =

1

2
y +

i~
eB

∂

∂x
. (3.35)

The angular momentum operator (there is only one in a two dimensional system) is given

by

L ≡ −i~x
∂

∂y
+ i~y

∂

∂x
=

eB

2
(X2 + Y 2)− 1

2eB
(P 2

x + P 2
y ) = ~(b†b− a†a) . (3.36)

The states |N, n〉 are the eigenstates of L,

L|N,n〉 = ~(b†b− a†a)|N, n〉 = ~(n−N)|N, n〉 , (3.37)

2The quantum numbers N and n correspond, respectively, to the “oscillators” a and b.
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with eigenvalues ~(n−N). Thus, b and b†, respectively, are the operators decreasing and

increasing the angular momentum of an electron.

We will now find the wave functions |N,n〉 explicitly. It is convenient to introduce a

pair of complex conjugate dimensionless coordinates

z =
1

2`B

(x + iy) , z∗ =
1

2`B

(x− iy) (3.38)

and the corresponding differential operators

∂

∂z
= `B

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗
= `B

(
∂

∂x
+ i

∂

∂y

)
. (3.39)

The ladder operators (3.28) now take the form

a = − i√
2

(
z +

∂

∂z∗

)
, a† =

i√
2

(
z∗ − ∂

∂z

)
,

b =
1√
2

(
z∗ +

∂

∂z

)
, b† =

1√
2

(
z − ∂

∂z∗

)
. (3.40)

In analogy with the harmonic oscillator, the states in the lowest Landau level (N = 0)

must satisfy

a|ψ〉 = 0 , i.e. − i√
2

(
z +

∂

∂z∗

)
ψ(x) = 0 (3.41)

with the solution

ψ(x) = λ(z)e−zz∗ , (3.42)

where λ(z) is an arbitrary analytic function. The state |N = 0, n = 0〉 = |ψ0〉 has to

satisfy, in addition, the condition

b|ψ0〉 = 0 , i.e.
1√
2

(
z∗ +

∂

∂z

)
ψ0(x) = 0 . (3.43)

Since ψ0(x) = λ0(z)e−zz∗ , the latter reduces to

(
z∗ +

∂

∂z

) (
λ0(z)e−zz∗) =

∂λ0(z)

∂z
e−zz∗ = 0 ⇒ λ0(z) = const . (3.44)

The normalization condition for |ψ0〉 dictates λ0(z) = (2π`2
B)−1/2, so that

ψ0(x) =
1√
2π`2

B

e−|z|
2

=
1√
2π`2

B

exp

(
−x2 + y2

4`2
B

)
. (3.45)
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The states |ψn〉 = |0, n〉 from the lowest Landau level, but with higher angular momenta,

are obtained by repeated application of the b† operator on the vacuum |ψ0〉 (see (3.31)) —

ψn(x) =

√
1

2nn!

(
z − ∂

∂z∗

)n

ψ0(x) =

√
2n

n!2π`2
B

zne−|z|
2

. (3.46)

In higher Landau levels the calculations get more complicated, leading to Laguerre poly-

nomials.

The probability that the electron in a state |ψn〉 is found at radius r = 2`B|z| is given

by

|ψn(x)|2 =
2n

n!2π`2
B

|z|2ne−2|z|2 ∝ r2n exp

(
− r2

2`2
B

)
, (3.47)

which has a sharp maximum at rn =
√

2n`B. The area of a circle with radius rn is 2πn`2
B.

It accommodates n Landau site (n possible values of the angular momentum), i.e. the area

of one Landau site is ∆S = 2π`2
B. This holds for any Landau level, not only for the lowest

one.

For a sample of area S there are

S

∆S
=

S

2π`2
B

=
e

2π~
SB ≡ SB

ΦD

(3.48)

states in each Landau level. The constant ΦD = 2π~
e

is the Dirac flux quantum. We define

the Landau level filling factor ν as the ratio between the total number of electrons in the

system and the number of states available in one Landau level:

ν :=
ρ0S
SB
ΦD

=
ρ0ΦD

B
, (3.49)

ρ0 is the electron density.

3.1.3 Many-particle states

It is straightforward to determine the ground state of the system at filling factor ν = 1,

i.e. when the lowest Landau level is completely filled. This is a particular case in the

integer QHE. For the wave function Ψ(x1, . . . , xN) of N electrons, where the appropriate

N depends on the size of the system as N = ρ0S = SB
ΨD

, the Pauli exclusion principle

implies that it is given by the Slater determinant constructed from the one particle wave
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functions (3.46),

Ψ(x1, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

ψ0(x1) ψ1(x1) · · · ψN−1(x1)

ψ0(x2) ψ1(x2) · · · ψN−1(x2)
...

...

ψ0(xN) ψ1(xN) · · · ψN−1(xN)

∣∣∣∣∣∣∣∣∣∣

∝

∣∣∣∣∣∣∣∣∣∣

1 z1 · · · zN−1
1

1 z2 · · · zN−1
2

...
...

1 zN · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣

e−
∑N

j=1 |zj |2

=

(∏
r<s

(zr − zs)

)
e−

∑N
j=1 |zj |2 , (3.50)

where we have recognized the Vandermonde determinant.

In the case of fractional QHE, the Landau levels are not filled completely. The fractional

QH system develops a new type of collective ground state driven by the Coulomb repulsion

between the electrons that has been neglected so far, but now it becomes necessary to

explain the fractional QHE. A trial wave function of the ground state at filling factor

ν = 1
m

, m odd, was first proposed by Laughlin [20],

Ψm(x1, . . . , xN) = Nm

(∏
r<s

(zr − zs)
m

)
e−

∑N
j=1 |zj |2 , (3.51)

where Nm is the normalization factor.

Several properties of this wave function are to be pointed out. It is antisymmetric

under the exchange of any two electron positions. Since the prefactor
∏

r<s(zr − zs)
m is

purely analytic, all particles are in the lowest Landau level and since it is a polynomial in

z1, . . . , zN , Ψm is an eigenstate of the total angular momentum operator ~
∑

r b†rbr. The

Coulomb repulsion among electrons is also contained in the prefactor, which has a zero of

order m at the points of coincidence zr = zs. The Laughlin wave function (3.51) is the

particular state, in which all electrons, having their own cyclotron motion, are repelled

from each other as much as possible. It is not an exact ground state, but it has a very

high overlap with numerical solutions for the QHE computed for various kinds of repulsive

potentials [20].
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3.1.4 Quasiparticles in the fractional QHE

Quasiparticles in the FQHE are stable vortex solitons3 carrying fractional electric charges.

We shall see that they obey anyonic statistics, i.e. they are anyons. A quasihole is created

at the origin by transforming the polynomial part of the Laughlin wave function (3.51) as

follows

Ψ+
m = N+

(∏

k

zk

∏
r<s

(zr − zs)
m

)
e−

∑N
j=1 |zj |2 , (3.52)

[16] and [21]. This amounts to increasing the angular momentum of each electron by 1 and

pushing the electrons outwards from the vortex center. Similarly, a quasielectron is created

at the origin when the angular momentum of each particle decreases by 1 (and electrons

are pulled towards the vortex center),

Ψ−
m = N−

(∏

k

∂

∂zk

∏
r<s

(zr − zs)
m

)
e−

∑N
j=1 |zj |2 . (3.53)

The wave functions Ψ+
m and Ψ−

m, being the eigenstates of the Hamiltonian as well as Ψm,

do not decay in time. The size of quasiparticles is of the order of `B (the magnetic length

(3.20)). Quasiholes are easier to analyze, but results analogous to those that will be derived

hold for quasielectrons as well.

The electric charge of a quasihole can be calculated using the concept of the Berry

phase4 [4]. The wave function describing a quasihole located at position zα is obtained

from (3.52) by the shift zk → zk − zα in the polynomial part,

Ψ+zα
m = N+

α

(∏

k

(zk − zα)

)
Ψm . (3.54)

3On the classical level, solitons are extended objects (classical field configurations) that are not de-
formable continuously into a classical vacuum without violating the energy finiteness condition. One says
that solitons are topologically stabilized.

4In quantum mechanics, the initial-state and final-state vectors of a cyclic evolution are related by a
phase factor eiϕB (so called geometric or Berry phase), which can have observable consequences [22].

The concept of Berry phase was first published by M. V. Berry in 1984 [23] in the context of adiabatic
evolution of a cyclic quantum system. Barry Simon explained the Berry phase mathematically as an
anholonomy in the parameter space [24]. Later on, Y. Aharonov and J. Anandan showed that if the
evolution is cyclic in the projective Hilbert space, the anholonomy is not based on the assumption of
adiabaticity [25]. Many further generalizations showed that the Berry phase is a pure artefact of the
geometry of the projective Hilbert space and hence is independent of the actual Hamiltonian (as long as
the curve in the projective Hilbert space is not changed).
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Let us transport the quasihole adiabatically along a closed loop Γ so that zα becomes a

time-dependent parameter. Since the time dependence of Ψ+zα
m (t) comes solely from zα(t),

we find that
d

dt
Ψ+zα

m (t) =
∑

k

d ln(zk − zα(t))

dt
Ψ+zα

m (t) . (3.55)

The formula for calculating the Berry phase [25],

ϕB = i

∫ t1

t0

〈ψ(t)| d
dt
|ψ(t)〉 dt , (3.56)

takes the form

ϕB = i

∫ t1

t0

〈Ψ+zα
m (t)|

∑

k

d ln(zk − zα(t))

dt
|Ψ+zα

m (t)〉 dt , (3.57)

where the integral over t is evaluated from the time t0, when the quasihole begins its tour,

to the final time t1 when it returns to its original position. We will assume that the loop

Γ is traversed counterclockwise. (3.57) can be rewritten in terms of the electron density in

the state Ψ+zα
m (t),

ρ(z) = 〈Ψ+zα
m (t)|

∑

k

δ(2)(z − zk)|Ψ+zα
m (t)〉 , (3.58)

so that

ϕB = i

∫ t1

t0

dt

∫
d2z

d ln(z − zα(t))

dt
ρ(z)

= i

∫
d2z

∫ t1

t0

dt
dzα(t)

dt

ρ(z)

zα(t)− z

= i

∫
d2z

∮

Γ

dzα
ρ(z)

zα − z
. (3.59)

Under the reasonable assumption that the density ρ(z) is a regular function, only the points

z inside Γ will give non-vanishing contour integral
∮

Γ
1

zα−z
dzα = 2πi. Thus

ϕB = i

∫

<Γ

d2z ρ(z)2πi = −2πNΓ , (3.60)

where the symbol
∫

<Γ
d2z denotes the integral over the region inside Γ, and NΓ is the

number of electrons that are in there.

It can be shown [16] that the density of electrons in the state Ψ+zα
m is uniform, i.e.

NΓ = ρ0SΓ, where SΓ is the area inside the loop Γ. Then NΓ can be related, using (3.49),

to the magnetic flux ΦΓ = −BSΓ penetrating the area enclosed by Γ,

NΓ = ν
BSΓ

ΦD

= −ν
ΦΓ

ΦD

. (3.61)
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If we identify the Berry phase with the Aharonov-Bohm phase ϕAB = e
i
~ qΦΓ (footnote ??)

that a particle of charge q acquires when it is moved along a closed loop encircling a flux

ΦΓ, we can deduce the unknown charge q:

ϕB = 2πν
ΦΓ

ΦD

=
qΦΓ

~
= ϕAB ⇒ q =

2π~
ΦD

ν . (3.62)

Since by definition ΦD = 2π~
e

and, in our case, the filling factor ν = 1
m

, we obtain a bit

exotic result for the electric charge of a quasihole

eqh =
e

m
, (3.63)

where e is the elementary charge.

Analogously, one can derive [26] that the electric charge of a quasielectron is

eqe = − e

m
. (3.64)

To find the exchange parameter α (2.20) between two quasiholes we utilize the wave

function

Ψ
+zγ ,+zβ
m = N++

αβ

(∏

k

(zk − zγ)(zk − zβ)

)
Ψm (3.65)

and calculate the Berry phase of an adiabatic process when the quasihole at zγ(t) is moved

along a closed loop Γ, while the quasihole at zβ is kept fixed. Along the same lines as when

we calculated the charge of a quasihole we arrive to

ϕB = i

∫ t1

t0

〈Ψ+zγ ,+zβ
m (t)| d

dt
|Ψ+zγ ,+zβ

m (t)〉 dt = −2π

∫

<Γ

d2z ρ(z) , (3.66)

where ρ(z) is the electron density in the two-quasihole state,

ρ(z) = 〈Ψ+zγ ,+zβ
m (t)|

∑

k

δ(2)(z − zk)|Ψ+zγ ,+zβ
m (t)〉 . (3.67)

If zγ does not encircle zβ during its motion then ϕB = −2πNΓ. This corresponds to the

situation when the two quasiholes are not exchanged. On the other hand, if zβ is located

in the interior of Γ, the electron density inside Γ is no longer constant and the number of

electrons has to be diminished by 1
m

. This yields the Berry phase

ϕB = −2π

(
NΓ − 1

m

)
. (3.68)

The extra phase 2π
m

, that accounts for one winding, i.e. two exchanges of the quasiholes, is

identified with 2α, where α is the anyonic exchange parameter. Therefore

α =
π

m
. (3.69)

We conclude that quasiholes in the fractional QHE at filling ν = 1
m

, m = 3, 5, . . ., are

anyons with exchange phase ei π
m .
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3.1.5 Hall plateaux

So far we have studied the QH effect precisely at filling factor

ν =
ρ0ΦD

B
=

1

m
. (3.70)

When the magnetic field B is increased by ∆B, the number of Landau sites (3.48) increases

by S∆B
ΦD

, i.e. the filling factor ν decreases. Each Landau site thus created accommodates

one quasihole. When B decreases by ∆B, the number of Landau sites decreases by S∆B
ΦD

,

ν increases and for each missing Landau site a quasielectron is created.

Since both electrons and quasiparticles are electrically charged, the Hall current is car-

ried by both of them and the Hall resistivity Rxy (3.4) is a linear function of B. But, this

is only true in pure samples. Real samples contain impurities that localize the quasipar-

ticles. In the vicinity of the magic filling factors ν = 1
m

, only free electrons contribute to

the Hall current, which leads to the formation of Hall plateaux around ν = 1
m

(Fig.3.3).

As the filling factor changes further, a Hall plateau is broken eventually since too many

quasiparticles are created to be localized by impurities.

Figure 3.3: Quasielectrons are excited for B > mρ0ΦD and quasiholes are excited for

B < mρ0ΦD. They are trapped by impurities and don’t contribute to the Hall current.

The Hall current remains unchanged in the vicinity of ν = 1
m

, as is the origin on the Hall

plateau.
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3.2 High-temperature superconductivity

Anyons gained a lot of attention when it was realized that they could provide a mech-

anism for the high-Tc superconductivity, observed in cuprate and other materials. The

current picture is that a gas of semions, i.e. anyons with the exchange parameter α = π
2
,

exhibits superfluidity and becomes superconducting if the anyons are electrically charged

[27]. However, it is an open question whether this mechanism can be observed experimen-

tally in nature.

As discussed in (2.27), anyons violate discrete symmetries of parity (P ) and time rever-

sal (T ). Therefore, by experience, their presence in a material should cause optical effects.

For example, linearly polarized light passing through sugar water rotates its direction of

polarization due to a definite handedness of the molecules in the solution. Another example

which breaks both (P ) and (T ) symmetries is the Faraday effect. In this effect, the direc-

tion of polarization of a linearly polarized light is rotated due to a magnetic field applied

to the sample in the direction of propagation. When the light is reflected and travels back

through the sample in the opposite direction, it does not “unrotate” its polarization axis

into the original state but rather rotates once again in the same direction (time reversal

violation).

It was suggested that the presence of anyons in the high-Tc materials should cause

effects similar to the Faraday effect. However, a careful experiment by Spielman et al.

[28] has found no signal of time reversal violation. It seems that anyons do not provide a

mechanism for the high-Tc superconductivity in the observed compounds (see [3], chapter

9 for more details). On the other hand, this does not rule out the possibility that anyonic

superconductors exist, but are yet to be discovered.
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Chapter 4

Propagation of anyons on the toric

code

In quantum information theory, the toric code is a model that can serve as a platform

for quantum computational tasks. In particular, it can serve as a quantum memory — a

device that stores quantum information. The lifetime of such memory is the central issue

that decides about its potential practical usefulness. Excited states of the toric code are

interpreted as anyons. Under perturbations, these anyons can propagate and cause logical

errors. Our goal is to investigate the time evolution of the anyons living on the toric code

and to see whether a disorder imprinted in the system can guarantee their (Anderson)

localization.

4.1 Toric code – introduction

Quantum computer is a very powerful device. It can solve certain computational problems

qualitatively faster than an ordinary computer. For example, there is no published classical

algorithm decomposing efficiently an integer into its prime factors, yet a quantum algorithm

running on a quantum computer has been proposed by Peter Shor [29], which resolves this

problem in a time polynomial in the length of the input. Although there exist many

quantum algorithms that push the frontiers of what computers can manage to resolve,

the biggest challenge is the actual physical realization of a scalable and reliable quantum

computer. This is because real quantum systems are vulnerable to interaction with the

environment which causes decoherence of the quantum states, affects quantum information

and consequently discredits the outcome of the computation. Shor’s discovery of fault-

tolerant quantum computation [30] allowed the building blocks of a quantum circuit, the
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quantum gates, to be imperfect, that is to be close to the ideal ones up to a constant

precision δ. Unfortunately, the threshold value of δ is very small (estimates vary) and thus

hard to achieve.

Classical gates are, in contrast, reliable enough, therefore classical computation doesn’t

need to be performed fault-tolerantly. Consider, for example, how classical information

is stored on a magnetic tape. Magnetism arises from spins of the individual atoms, each

of which is quite sensitive to thermal fluctuations. The spins tend to be oriented in the

same direction (to minimize the energy). If one spin is flipped to the opposite direction,

its interaction with the other spins forces it to flip back — errors are being corrected at

the physical level. In the quantum computational framework we can similarly propose a

quantum code with local stabilizer operators. Such code was invented by Alexei Kitaev in

1997 [5].

Consider an N ×N square lattice with “torus-like” identification (Fig.4.1). There are

Figure 4.1: Toric code is a square lattice wrapped around a torus. Spin-1
2

particles are

situated on each edge of the lattice and the stabilizer operators Av and Bp are defined,

respectively, for each vertex v and each plaquette p.

spin-1
2

particles located on each edge of the lattice. The total Hilbert space of this system

is

H = H⊗2N2

2 , (4.1)
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whereH2 is the Hilbert space of dimension 2 (one qubit space). So called stabilizer operators

are defined around each vertex v and around each plaquette p of the lattice as follows:

Av :=
∏

j∈star(v)

σx
j Bp :=

∏

j∈boun(p)

σz
j , (4.2)

with

σ
x/z
j =

⊗

i∈edges

(
σx/z if i = j

1 if i 6= j

)
, (4.3)

where σx and σz are the Pauli operators. The notation “j ∈ star(v)” means that we take

all (four) edges that connect to the vertex v. Similarly, “j ∈ boun(p)” denotes the edges

on the boundary of the plaquette p. Note that all Av’s and Bp’s commute with each other

because star(v) and boun(p) have either 0 or 2 common edges.1 Also, they are Hermitian

and have eigenvalues 1 and −1. There are all together 2N2 stabilizers Av, Bp.

Define the protected subspace L ⊆ H as

L := {|ξ〉 ∈ H | Av|ξ〉 = |ξ〉, Bp|ξ〉 = |ξ〉 for all v, p} . (4.4)

Vectors in this subspace are supposed to represent quantum information. How much quan-

tum information can we store? This is a question about the dimensionality of the subspace

L. We can observe that there are two relations between the stabilizer operators —
∏

v

Av = 1
∏

p

Bp = 1 , (4.5)

so there are only 2N2 − 2 independent stabilizers. Now, the handwaving argument is

that since each (independent) condition in the definition of L (4.4) halves the protected

subspace, the dimension of L is 22N2

22N2−2
= 4. A rigorous proof follows from the general

theory of additive quantum codes [31, 32], but we will not discuss it here.

We will proceed similarly to the original Kitaev’s paper [5]. Consider paths c on the

lattice, i.e. sequences c = (j1, . . . , jk), k ∈ N of edges j1, . . . , jk, and similarly cuts c′ of the

lattice, i.e. paths on the dual lattice.2 Some examples of these paths and cuts are depicted

in Fig.4.2. To each path c we assign an operator Zc by the prescription

c = (j1, . . . , jk) 7→ Zc :=
k∏

i=1

σz
ji

(4.6)

1For j 6= k: (σx
j σx

k)(σz
j σz

k) = −σz
j σx

j σx
kσz

k = (σz
j σz

k)(σx
j σx

k).
2The dual lattice is defined (in the way usual in the graph theory) by declaring plaquettes of the original

lattice vertices of the dual lattice and connecting all pairs of neighboring plaquettes of the original lattice
by edges of the dual lattice. In our case, the dual lattice is the original one shifted in both directions by
half the lattice spacing.
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Figure 4.2: A generic path c on the lattice represents the operator Zc. Two topologically

nontrivial closed paths c1 and c2 define the operators Z1 and Z2 that act nontrivially on

the protected subspace L. Analogously, cuts c′ of the lattice, i.e. paths on the dual lattice,

represent the operators Xc′ . Two topologically nontrivial closed cuts c′1 and c′2 are shown

that define the operators X1 and X2. These operators act nontrivially on L.

and similarly to each cut c′ we assign Xc′ through

c′ = (j′1, . . . , j
′
k′) 7→ Xc′ :=

k′∏
i=1

σx
j′i

. (4.7)

We observe that if c (c′) is a closed loop then Zc (Xc′) commutes with all the stabilizers Av,

Bp and therefore is a mapping from L to L. We also observe that if a loop c is contractible,

i.e. if it is a boundary of some set of plaquettes P , the corresponding operator Zc acts on

L as the identity operator, Zc|ξ〉 = |ξ〉 for all |ξ〉 ∈ L, for it is a product of the stabilizers

Bp, p ∈ P . Similarly for the cuts c′. Thus, with respect to the protected subspace L, only

non-contractible loops and cuts are interesting.

On a torus we have two non-contractible loops (modulo the loops that are boundaries of

some region) — the first homology group has two generators. We denote these loops c1 and

c2 and the corresponding operators Z1 and Z2. Analogously, two non-contractible cuts c′1
and c′2 define operators X1 and X2. The loops c1, c2 and the cuts c′1, c

′
2 are drawn at Fig.4.2.
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Realize that traveling any of these non-contractible loops or cuts twice yields the identity

operator so going to higher winding numbers is fruitless. The 4 operators Z1, Z2, X1, X2

have the same commutation relations as the operators (σz ⊗ 1), (1 ⊗ σz), (σx ⊗ 1), (1 ⊗
σx). This is in agreement with the protected subspace being 4-dimensional, i.e. |ξ〉 ∈ L
corresponding to a state of 2 qubits. The ground state of the toric code can encode 2 qubits

of quantum information. Hence, we may hope to use the toric code as quantum memory.

4.2 Toric code Hamiltonian and anyonic excitations

Consider the Hamiltonian

H0 = −
∑

v∈vertices

Av −
∑

p∈plaquettes

Bp . (4.8)

This Hamiltonian is more or less realistic, because it only involves local interactions —

each stabilizer acts only on four nearby spin-1
2

particles. It is easy to diagonalize as all

of the terms Av, Bp commute. The ground state subspace coincides with L; it is 4-fold

degenerate. Excited states occur if some of the constraints

Av|ξ〉 = |ξ〉 Bp|ξ〉 = |ξ〉 (4.9)

are violated. Since the eigenvalues of Av and Bp are ±1, the energy gap between the

ground state and any of the excited states is ∆E ≥ 2.

Let us construct an excited state by taking a string (a connected path) t, as pictured

in Fig.4.3(a), and applying the corresponding operator Zt (recall the definition (4.6)) to

some ground state |ξ〉. We obtain a state Zt|ξ〉 for which

Av1Zt|ξ〉 = −Zt|ξ〉 and Av2Zt|ξ〉 = −Zt|ξ〉 , (4.10)

where v1 and v2 are the two distinct endpoints of an open string t. We interpret this

violation the constraints (4.9) as two e-type particles occupying the vertices v1, v2. If t is

a closed string then Zt|ξ〉 ∈ L and no particles are created. Also note that for two strings

t1, t2 with common starting and ending points, Zt1|ξ〉 = Zt2|ξ〉 unless the loop “t1 followed

by t2” winds around the torus.

Analogously, with a cut t′ we have associated an operator Xt′ (definition (4.7)). If t′

has distinct endpoints p1, p2 (see Fig.4.3(a)) then

Bp1Xt′|ξ〉 = −Xt′|ξ〉 and Bp2Xt′|ξ〉 = −Xt′|ξ〉 , (4.11)

and we talk about two m-type particles occupying the plaquettes p1 and p2.
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Figure 4.3: (a) A string t on the lattice represents the operator Zt. The endpoints of

t (vertices v1 and v2) are occupied by e-type particles. A string t′ on the dual lattice

represents the operator Xt′ . The endpoints of t′ (plaquettes p1 and p2) are occupied by

m-type particles. (b) The initial configuration described by the strings t and t′ presents a

pair of e particles and a pair of m particles. If one of the e particles moves around one of

the m particles (the cycle c), the global wave function acquires a phase factor −1. This

reveals anyonic statistics between the e and m-type particles.

4.2.1 Stability of a quantum memory

Suppose we initiate the toric code in a state |ξ〉 ∈ L. By doing so we have stored quantum

information. The question is: What will be the state of the system after some time? Will

it be |ξ〉 or will it change? How reliable is our quantum memory?

Errors might occur characterized by an operator

E =
∏

j∈edges

(σx
j )αj

∏

j∈edges

(σz
j )

βj , αj, βj ∈ {0, 1} (4.12)

acting on the initial state |ξ〉. The new state E|ξ〉 is in general an excited state of the

Hamiltonian H0. It describes some configuration of e and m-type particles. The particles

represent elementary errors, violations of the stabilizer conditions (4.9). They always come

in pairs because of the relations (4.5).3 Due to the energy gap ∆E ≥ 2 between the ground

state and the excited levels, which remains finite in the thermodynamic limit, errors are

suppressed by coupling the toric code to a thermal bath with low temperature.

3Let, for instance, e particles be created at vertices from the set Ve = {v | AvE|ξ〉 = −E|ξ〉}. It holds
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If the particles have been created, we can, in principle, bring them pairwise together to

perform error correction. This is realized by a correction operator C acting upon E|ξ〉 in

such a way that the operator CE contains only closed strings, so that the resulting state

CE|ξ〉 lies in the protected subspace L. If the error rate is below a certain threshold,4 the

error correction can be done through a minimum distance matching of the particle pairs

without forming topologically nontrivial loops. The resulting state CE|ξ〉 will be equal to

the initial state |ξ〉, i.e. the quantum information will remain unchanged. If, however, the

error rate is too high, we can’t avoid creating topologically nontrivial loops (such as the

operators Z1, Z2, X1, X2). The state CE|ξ〉 might then be different from |ξ〉, which results

in a logical error — the information stored in the quantum memory is changed.

4.2.2 Anyonic statistics revealed

Consider a perturbation to the toric code Hamiltonian H0 (definition 4.8) of the form

V = −hx

∑

j∈edges

σx
j − hz

∑

j∈edges

σz
j , (4.13)

where the constants hx and hz measure the strength of the perturbation. This perturbation

does not commute with the original Hamiltonian H0. The eigenstates of H0 are therefore

no longer eigenstates of the perturbed Hamiltonian H = H0 + V . As a consequence, e and

m particles will propagate rather then stay at their initial positions.

What happens if the particles move around each other? Consider the initial state

|Ψi〉 = Xt′Zt|ξ〉 , |ξ〉 ∈ L (4.14)

pictured in Fig.4.3(b), which describes a configuration of two e particles and two m parti-

cles. Let, for example, one of the e particles move around one of the m particles and end

up at its initial position. The state of the system is now described by the wave function

|Ψf〉 = ZcXt′Zt|ξ〉 = −Xt′ZtZc|ξ〉 = −|Ψi〉 , (4.15)

that

E|ξ〉 =

(∏
v

Av

)
E|ξ〉 =

( ∏

v∈Ve

Av

)
 ∏

v 6∈Ve

Av


 E|ξ〉 =

( ∏

v∈Ve

Av

)
E|ξ〉 = (−1)|Ve|E|ξ〉 ,

where |Ve| denotes the number of elements of the set Ve.
4If P denotes the probability of an individual σx error, the threshold is estimated as P ≈ 0.11 [33].

The same holds for σz errors.
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because the operators Xt′ and Zc anti-commute. We can see that the global wave function

acquires a phase factor −1. The e and m-type particles are quite different from bosons

and fermions, which do not change sign in such a process. Indeed, they are (Abelian)

anyons and we will call them e anyons and m anyons from now on. Notice that the

anyonic statistics is revealed only between e and m particles, not between e (or m) particles

themselves. In terms of the Aharonov-Bohm effect interpretation (footnote 5) we can

view the e anyons as electric charges and m anyons as magnetic fluxes with appropriate

combination (charge) × (flux) = π so that the Aharonov-Bohm phase ei(charge)×(flux) is

equal to −1.

The effect of the perturbation (4.13), which would be caused by a spurious magnetic

field in any physical realization of the toric code, is to create, annihilate and transport!

anyons. If this acts unchecked, even a single pair of anyons can form a topologically

nontrivial loop around the torus, thus causing a logical error (a final state |ξf〉 ∈ L that

is different from the initial state |ξi〉 ∈ L). Therefore, to know how stable our quantum

memory is, we need to investigate the propagation of errors, i.e. the anyons, on the toric

code lattice. If they exhibit some sort of localization (at least under certain assumptions),

the toric code will get one step closer to become a reliable quantum memory.

4.2.3 Perturbation induced anyonic quantum walks

Let us first make clear that the unperturbed Hamiltonian H0 defined in (4.8) doesn’t

induce any motion of the anyonic excitations. Choose an orthonormal basis of L: L =

span{|ξ−−〉, |ξ−+〉, |ξ+−〉, |ξ++〉}, where

Z1|ξs1s2〉 = s1|ξs1s2〉 , Z2|ξs1s2〉 = s2|ξs1s2〉 . (4.16)

Take two arbitrary configurations of anyons described by two sets of strings — the operators

Z
(i)
t X

(i)
t′ and Z

(f)
t X

(f)
t′ — acting on some ground state |ξs1s2〉 ≡ |ξ〉. We observe that the two

states |i〉 = Z
(i)
t X

(i)
t′ |ξ〉 and |f〉 = Z

(f)
t X

(f)
t′ |ξ〉 are orthogonal, 〈f |i〉 = 0, if they correspond

to two different configurations of anyons, since in that case |i〉 and |f〉 are two distinct

eigenvectors of some Hermitian operator Av or Bp. Also, 〈f |i〉 = 0 if |i〉 and |f〉 describe

the same anyonic configuration, but distinct logical states. Therefore, the matrix elements

〈f |H0|i〉 = −
∑

v

〈f |Av|i〉 −
∑

p

〈f |Bp|i〉 = −
∑

v

±〈f |i〉 −
∑

p

±〈f |i〉 (4.17)

can be nonzero only for |i〉, |f〉 describing identical anyonic configurations and logical

states, i.e. H0 is diagonal in the basis of anyonic configurations. The time evolution of a
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state |i〉 is then trivial, only multiplying |i〉 by the phase factor eiEi , i.e. the anyons don’t

move around.

Introducing a perturbation V as in (4.13) makes the anyons walk. We put hx = 0 for

simplicity and hz ≡ h for brevity. Now, the Hamiltonian of the system

H = H0 + V = −
∑

v∈vert

Av −
∑

p∈plaq

Bp − h
∑

j∈edges

σz
j (4.18)

leaves the m-type anyons static since for any configuration |i〉 and any plaquette p

Bp|i〉 = sp|i〉 , sp ∈ {−, +} ⇒ Bp(H|i〉) = HBp|i〉 = sp(H|i〉) . (4.19)

On the other hand, H induces a nontrivial evolution of the e anyons — a continuous-time

quantum walk. To see this, realize that H has nonzero off-diagonal matrix elements. Given

two states |i〉 = Z
(i)
t X

(i)
t′ |ξ〉 and |f〉 = Z

(f)
t X

(f)
t′ |ξ〉 we observe that

〈f |(−V )|i〉 = h
∑

j∈edges

〈ξ|X(f)
t′ Z

(f)
t σz

j Z
(i)
t X

(i)
t′ |ξ〉 = h〈ξ|X(f)

t′ Z
(f)
t σz

j Z
(i)
t X

(i)
t′ |ξ〉

= ±h〈ξ|Z(f)
t σz

j Z
(i)
t X

(f)
t′ X

(i)
t′ |ξ〉 = ±h〈ξ|ξ〉 = ±h (4.20)

if for some edge j, Z
(f)
t σz

j Z
(i)
t forms a system of closed loops only and X

(i)
t′ , X

(f)
t′ corre-

spond to identical configuration of the m anyons. To determine the ± sign one needs to

calculate how many times the Pauli operators σx and σz are transposed when going from

X
(f)
t′ Z

(f)
t σz

j Z
(i)
t X

(i)
t′ to the expression Z

(f)
t σz

j Z
(i)
t X

(f)
t′ X

(i)
t′ . For this purpose we recall the

discussion related to Fig.4.3(b). The ± depends on how many m anyons in the X
(f)
t′ con-

figuration are enclosed by the loops Z
(f)
t σz

j Z
(i)
t with “+” corresponding to an even number

and “−” to an odd number of anyons. The result only depends on the positions of the m

anyons and not on the particular way they are connected by the strings X
(f)
t′ .

Our goal is to investigate how the e anyons will propagate under the action of the

evolution operator e−itH , given some fixed (random) configuration of the m anyons. In this

context we would like to mention the Wootton’s and Pachos’ paper [7] where the authors

consider a perturbed toric code Hamiltonian

HTC + Hh = −
∑

v

JvAv −
∑

p

JpBp − h
∑

j

σz
j . (4.21)

and analyze the propagation of the e anyons with no m anyons present in the system.

They show that if Jv’s are not uniform but take random values on each vertex and h ¿ Jv,

the disorder in the system can successfully localize the anyons by placing an exponential
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bound on the length of their propagation. Their arguments are based on the theory of

Anderson localization (see the original Anderson’s paper [6] or a recent overview [34]).

In our case the Jv’s are uniform and for our choice of units Jv = 1. The random

property of our system is the m anyon configuration. Does this kind of randomness lead to

a localization of the e anyons as in [7] or does it not? To make the analysis more tractable

we will investigate a simplified topological model. Instead of a torus we will define our

code on a strip with one periodic identification. The lattice will resemble a ladder and we

will refer to it as the ladder lattice.

4.3 Ladder lattice model

In analogy with the toric code, we define a stabilizer code on a ladder-like lattice with one

identification depicted in Figure 4.4. There are N vertices in the horizontal direction and

Figure 4.4: The stabilizer code defined on a square lattice on a strip — a ladder with one

identification. Spin-1
2

particles are situated on each edge of the lattice and the stabilizer

operators Av and Bp are defined for each vertex v and plaquette p, respectively (in analogy

with the original toric code, Fig.4.1).

2 vertices in the vertical direction. Spin-1
2

particles live on the edges of the lattice, the

stabilizer operators Av consist of three Pauli operators σx surrounding a vertex v,

Av :=
∏

j∈star(v)

σx
j , (4.22)

and the stabilizer operators Bp form the boundary of a plaquette p,

Bp :=
∏

j∈boun(p)

σz
j . (4.23)

The protected subspace L ⊆ H contains vectors |ξ〉 such that

Av|ξ〉 = |ξ〉 , Bp|ξ〉 = |ξ〉 (4.24)
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for all vertices v and plaquettes p. The subspace L has dimension 2. Corresponding to

this code is the unperturbed Hamiltonian

H0 = −
∑

v∈vertices

Av −
∑

p∈plaquettes

Bp , (4.25)

the lowest energy eigenspace of which coincides with L. An e-type anyon occurs on a

vertex v whenever

Av|ψ〉 = −|ψ〉 (4.26)

and similarly an m-type anyon occurs on a plaquette p for which

Bp|ψ〉 = −|ψ〉 . (4.27)

Anyons of both types are created in pairs and they occupy the endpoints of a string of σz

operators (for the e anyons) and the endpoints of a cut of σx operators (for the m anyons).

We introduce a perturbation to H0 of the form V = −h
∑

j σz
j . The full Hamiltonian

now reads

H = −
∑

v∈vertices

Av −
∑

p∈plaquettes

Bp − h
∑

j∈edges

σz
j (4.28)

and it induces a quantum walk of the e anyons while keeping the m anyons static. The

logical error occurs when one e anyon from a pair propagates all the way around the ladder

and annihilates with its fellow e anyon. During this process a loop Z of σz matrices is

formed which maps the logical state |ξ〉 into another logical state Z|ξ〉, causing a logical

error. Our goal is to probe how the e anyons will propagate in a static pattern of the m

anyons. What effect will the nontrivial braiding properties of the anyons (recall Fig.4.3)

have on their quantum walk?

We assume that the perturbation V is weak (h ¿ 1). Then the e anyon pairs are

created sparsely and each pair can be considered independently. We will thus analyze a

single pair only. Creation and annihilation of a pair of anyons is energetically suppressed

by the energy gap ∆E = 2.

Let us introduce some notation as suggested by Fig.4.5. We denote H the Hilbert space

of one e anyon configurations, i.e.

H = span{|x, y〉 ≡ |x〉 ⊗ |y〉 | x = 1, . . . , N , y = 0, 1} (4.29)

is the space of all positions (vertices) one e anyon can occupy. Let

M = {m1, . . . ,m|M |} ⊆ {1, . . . , N} (4.30)
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Figure 4.5: Vertices of the ladder are denoted by a pair x = 1, . . . , N (the horizontal axis)

and y = 0, 1 (the vertical axis). Each vertex corresponds to one basis vector of the one-

e-anyon Hilbert space H. There are N plaquettes numbered by integers 1, . . . , N . The

identification on the two sides of the ladder is illustrated.

denote the set of plaquettes where m anyons are located. For a logical state |ξ〉 ∈ L we

denote |ξM〉 the state of |M | anyons of type m that have been created upon |ξ〉 and moved

to plaquettes from the set M = {m1, . . . , m|M |}.5
Once |ξM〉 has been fixed and a pair of e anyons created we represent configurations of

the two e anyons by the vectors |x1, y1〉 ⊗ |x2, y2〉 ∈ H ×H.6 To establish the connection

with the original Hilbert space of the code (which is fully analogous to (4.1)) we need

to choose a canonical manner in which the string Zt connecting the two e anyons is laid

down.7 For this purpose choose and fix a point (x0, 0) on the ladder. Let (x1, y1) and

(x2, y2) be the positions of the two e anyons. The canonical string Zt1 starts at (x0, 0),

connects straightly and by the shortest way to the vertex (x1, 0) and then to the vertex

(x1, y1). Accordingly, Zt2 connects sequentially (x0, 0), (x2, 0) and (x2, y2). The canonical

string between the two positions (x1, y1) and (x2, y2) is the composition Zt = Zt1Zt2 (see

Fig.4.6).

5More precisely,
|ξM 〉 = Xt′ |ξ〉 ,

where Xt′ is a collection of strings of σx operators whose endpoints are m1, . . . ,m|M |. The set M carries
no information about a concrete layout of the strings. This information, however, is not important for
the braiding properties of the anyons, which is what we want to probe. It is only important how many m

anyons an e anyon encircles during its travel (see Fig.4.3 in this context).
6Strictly speaking, since the e anyons are indistinguishable, we should represent them by symmetrized

vectors |x1, y1〉⊗ |x2, y2〉+ |x2, y2〉⊗ |x1, y1〉. We will not be as punctual, because in a while we will reduce
our problem to a one particle walk only.

7Keep in mind that Zt1 |ξM 〉 and Zt2 |ξM 〉 are the same quantum state (they differ only by a phase
factor) if Zc = Zt1Zt2 is a closed contractible loop.
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Figure 4.6: The definition of the canonical manner of connecting two e anyons by a string

Zt.

4.3.1 One anyon walk

The two e anyons are almost independent. The only correlation between them is the fact

that their annihilation is energetically suppressed, so they cannot occupy the same position

at the same time. We will neglect this correlation (in doing so we support the spreading

slightly as we don’t prohibit the steps that bring the two anyons to the same vertex) and

analyze the propagation of one e anyon (the walker) only. For this purpose we fix the

position of one of the anyons sufficiently far (say, on the horizontally opposite side of the

ladder) from the other one, the walker.

We will induce the Hamiltonian HI , a linear operator on the space of one anyon con-

figurations H, that describes the propagation of one e anyon in the presence of some fixed

pattern of m anyons. Let us denote |x〉 ≡ |x, y〉 ∈ H and define

〈xf |HI |xi〉 := 〈ξM |Z(f)
t HZ

(i)
t |ξM〉 , (4.31)

where Z
(i)
t and Z

(f)
t are the canonical strings between the fixed anyon and the walker anyon

at position xi and xf , respectively. H as defined in (4.28) consists of three sums — over

vertices v, plaquettes p and edges j. We separate

HI = HI
v + HI

p + HI
e (4.32)

and analyze the three parts one by one. From the discussion around the relation (4.17) it

follows that

〈xf |HI
v |xi〉 = −

∑
v

〈ξM |Z(f)
t AvZ

(i)
t |ξM〉 = −


 ∑

v∈{xi,x̄}
−1 +

∑

v 6∈{xi,x̄}
1


 δxi,xf

= −(2N − 4)δxi,xf
, (4.33)

where 2N is the number of vertices of the lattice, x̄ is the position of the fixed e anyon
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and δxi,xf
= 1 if xi = xf and δxi,xf

= 0 otherwise. Similarly,

〈xf |HI
p |xi〉 = −

∑
p

〈ξM |Z(f)
t BpZ

(i)
t |ξM〉 = −

(∑
p∈M

−1 +
∑

p6∈M

1

)
δxi,xf

= −(N − 2|M |)δxi,xf
. (4.34)

The case of He is a bit more subtle, but it results from the relation (4.20) and the discussion

that follows it:

〈xf |HI
e |xi〉 = −h

∑
j

〈ξM |Z(f)
t σz

j Z
(i)
t |ξM〉 = −hδ〈xi,xf 〉s(xi,xf ) , (4.35)

where δ〈xi,xf 〉 = 1 if the vertex xi neighbors with xf and δ〈xi,xf 〉 = 0 otherwise. The factor

s(xi,xf ) accounts for the nontrivial braiding properties between e and m-type anoyns:

s(xi, xf ) =

{
−1 if yi = yf = 1 and min(xi, xf ) ∈ M

1 otherwise .
(4.36)

It is illustrated at Figure 4.7. The expression (4.35) is incorrect for vertices xi, xf located

Figure 4.7: The factor s(xi,xf ) = −1 in the case depicted due to the nontrivial braiding

properties between e and m-type anyons (recall Fig.4.3).

horizontally opposite of (x0, 0) since then topologically nontrivial loops can be formed.

We will neglect this fact as it does not affect our point — whether the particle remains

localized around (x0, 0) or spreads. Otherwise we would have to restrict ourselves to a

certain neighborhood of (x0, 0) with boundaries which would make our analysis much more

technical.

The time evolution of the system is governed by the evolution operator U I(t) = eitHI
.

Since HI
v and HI

p are just multiples of the identity operator, U I(t) factorizes as8

U I(t) = eit(HI
v+HI

p+HI
e ) = eitHI

v eitHI
p eitHI

e . (4.37)

8We use the fact that eA+B = eAeB if the commutator [A,B] = 0.
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The operator eitHI
v eitHI

p = e−it(2N−4)e−it(N−2|M |)1 only multiplies the wave function by a

global phase factor and as such is irrelevant. The propagation, or quantum walk, of one e

anyon is described by the Hamiltonian HI
e . In the position basis {|x〉} the matrix − 1

h
HI

e

has entries ±1 and it is convenient and illuminating to represent it by a graph with edge

weights ±1. This graph coincides with the ladder lattice graph and it is depicted in Fig.4.8.

Algebraically, the operator HI
e : H → H reads

Figure 4.8: The adjacency matrix of this weighted graph is − 1
h
HI

e . The weight is −1 for an

edge that is the upper boundary of a plaquette containing an m anyon and it is 1 otherwise.

HI
e = −h (1⊗H2 + H0 ⊗ |0〉〈0|+ H~ε ⊗ |1〉〈1|) , (4.38)

where

H2 = |0〉〈1|+ |1〉〈0| , (4.39)

H0 =
N∑

x=1

(|x + 1〉〈x|+ |x〉〈x + 1|) , (4.40)

H~ε =
N∑

x=1

εx (|x + 1〉〈x|+ |x〉〈x + 1|) (4.41)

and where the dependency on the set M is realized through a vector ~ε = (ε1, . . . , εN)

defined by

εx =

{
−1 if x ∈ M

1 if x 6∈ M .
(4.42)

In the above formulae, the identification |N + 1〉 ≡ |1〉 is implied.

Our goal now is to determine the transition amplitudes 〈x|eitHI
e |x0〉 that carry the full

information about the walker’s propagation. From the transition amplitudes we can de-

rive the time evolution of the position distribution |〈x|eitHI
e |x0〉|2, from which we can tell

whether the particle spreads around the lattice and causes a logical error or remains local-

ized. In the next section we will analyze in detail one dimensional problems (continuous-

time quantum walks) defined by the Hamiltonians H0 and H~ε.
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4.4 Continuous-time quantum walks in one dimension

We will analyze the quantum evolution of a particle living on a one dimensional lattice.

In literature, especially in the quantum information theory, this problem is called the

continuous-time quantum walk [35]. Indeed, it is inspired by the classical random walk

and translates it into the quantum mechanical framework.

While the time we take continuous, the space is considered discrete. This can be

thought of as a tight binding approximation — the particle is anchored to a vertex by a

sufficiently deep and thin potential well.

4.4.1 Cyclic lattice

Let us consider a free spinless quantum particle moving on a cycle graph with N vertices

(Fig.4.9). The Hilbert space of this system is N -dimensional,

Figure 4.9: The particle moves on a one dimensional periodic lattice pictured as a cycle

graph with N vertices. The hopping amplitudes for all neighboring sites are all equal to 1

(there is no disorder).

H = span{|x〉}N
x=1 , (4.43)

where |x〉 are the normalized eigenvectors of the position operator, X̂|x〉 = x|x〉. We

impose periodic boundary conditions |x = N + 1〉 = |x = 1〉 and |x = 0〉 = |x = N〉 and

consider the Hamiltonian

H = −
N∑

x=1

(|x + 1〉〈x|+ |x〉〈x + 1|) , (4.44)
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that is

H|x〉 = −(|x− 1〉+ |x + 1〉) . (4.45)

In the |x〉 basis H takes the matrix form

H =




1 1

1 1

1
. . .

. . . 1

1 1

1 1




. (4.46)

This Hamiltonian describes a particle hopping on a one dimensional periodic lattice with

the “hopping amplitude” being 1 for all neighboring sites.

The translational symmetry of the problem suggests that using the Fourier transform

(i.e. switching to the momentum basis) could lead to simplification. We define for all

k = 0, . . . , N − 1

|k〉 :=
1√
N

N∑
x=1

ei 2π
N

kx|x〉 . (4.47)

It is easy to see that the |k〉 vectors are orthogonal,

〈k|k′〉 =
1

N

∑

x,x′
ei 2π

N
(k′x′−kx) 〈x|x′〉︸ ︷︷ ︸

δxx′

=
1

N

N∑
x=1

ei 2π
N

(k′−k)x = δkk′ , (4.48)

and that they are in fact the eigenvectors of the Hamiltonian H:

H|k〉 =
−1√
N

∑
x

ei 2π
N

kx(|x + 1〉+ |x− 1〉)

=
−1√
N

e−i 2π
N

k
∑

x

ei 2π
N

k(x+1)|x + 1〉+
−1√
N

ei 2π
N

k
∑

x

ei 2π
N

k(x−1)|x− 1〉

= −e−i 2π
N

k|k〉 − ei 2π
N

k|k〉 = −2 cos

(
2π

N
k

)
|k〉 . (4.49)

The eigenvalues Ek = −2 cos
(

2π
N

k
)

are in general twice degenerate, Ek = EN−k, except for

the non-degenerate ground state |k = 0〉 = 1√
N

∑
x |x〉 and the special case when N is even

and k = N
2
. We have solved the spectral problem of the Hamiltonian H and thus opened

the possibility of finding the time evolution of the system analytically.

Let the particle start at time t = 0 in a fully localized state |ψ(0)〉 = |x = x0〉. We are

interested in the position distribution of the particle after a time t

Pt(x; x0) = 〈x|ψ(t)〉〈ψ(t)|x〉 = |〈x|U(t)|x0〉|2 , (4.50)
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where |ψ(t)〉 = U(t)|ψ(0)〉 and U(t) = e−itH is the evolution operator. For this sake we

calculate the amplitude of transition from the state |x0〉 to the state |x〉 in time t using

the resolution of unity in terms of the eigenvectors of H — 1 =
∑N−1

k=0 |k〉〈k|. We obtain

〈x|U(t)|x0〉 = 〈x|e−itH |x0〉 =
∑

k

e−itEk〈x|k〉〈k|x0〉

=
1

N

N−1∑

k=0

ei2t cos( 2π
N

k)ei 2π
N

k(x−x0) . (4.51)

We can now plug these transition amplitudes into (4.50) to find the position distribution

Pt(x; x0). The result is plotted at Fig.4.12 for N = 200, x0 = 100 and times t = 20, 50.

The particle is spread around the cycle when t is large enough.

We can derive (4.51) using a rather different approach — without diagonalizing the

Hamiltonian. Starting with

〈x|U(t)|x0〉 = 〈x|e−itH |x0〉 (4.52)

and expanding the exponential,

〈x|e−itH |x0〉 =
∞∑

n=0

(it)n

n!
〈x|(−H)n|x0〉 , (4.53)

we realize that the terms 〈x|(−H)n|x0〉 answer a classical question: How many ways can a

classical particle (a drunken sailor) walking on a cycle graph with N vertices get in n-steps

from the point x0 to the point x. Due to the periodicity of the cycle we have

〈x|(−H)n|x0〉 =
∑

p∈Z

(
n

x+pN−x0

2
+ n

2

)
, (4.54)

where we use the usual convention that
(

n
k

)
= 0 if k 6∈ {0, 1, . . . , n}. We rewrite the latter

in terms of the Kronecker δ symbol,

〈x|(−H)n|x0〉 =
∑

p∈Z

n∑
j=0

(
n

j

)
δ2j,x+pN−x0+n =

n∑
j=0

(
n

j

) ∑

p∈Z
δ2j,x+pN−x0+n (4.55)

and use the relation

1

N

N−1∑

k=0

ei 2π
N

k(r−s) =

{
1 if r = s + pN for some p ∈ Z
0 otherwise

(4.56)
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to obtain

〈x|(−H)n|x0〉 =
n∑

j=0

(
n

j

)
1

N

N−1∑

k=0

ei 2π
N

k(x−x0+n−2j)

=
1

N

N−1∑

k=0

ei 2π
N

k(x−x0)

n∑
j=0

(
n

j

)
ei 2π

N
k(n−j)e−i 2π

N
kj

=
1

N

N−1∑

k=0

ei 2π
N

k(x−x0)
(
ei 2π

N
k + e−i 2π

N
k
)n

=
1

N

N−1∑

k=0

ei 2π
N

k(x−x0)

(
2 cos

2π

N
k

)n

. (4.57)

Plugging this back into (4.53), the transition amplitudes read

〈x|U(t)|x0〉 =
∞∑

n=0

(it)n

n!
〈x|(−H)n|x0〉

=
1

N

N−1∑

k=0

ei 2π
N

k(x−x0)ei2t cos( 2π
N

k) , (4.58)

which, indeed, equals (4.51).

4.4.2 Infinite line

What happens if we send N → ∞? This corresponds to replacing a finite circle by an

infinite line.9 The sum in (4.51) is replaced by an integral, k
N

by z and 1
N

by dz. The

transition amplitudes read

〈x|U(t)|x0〉|N→∞ =

∫ 1

0

ei2t cos(2πz)ei2πz(x−x0)dz =
1

2π

∫ 2π

0

ei2t cos zeiz(x−x0)dz , (4.59)

where now x0, x ∈ Z. After the substitution z → −z + π
2

and using the fact that the

integrated function is 2π-periodic,

1

2π

∫ 2π

0

ei2t cos zeiz(x−x0)dz =
ix−x0

2π

∫ 2π

0

ei2t sin ze−iz(x−x0)dz (4.60)

and we unveil the integral representation of the Bessel functions of the first kind ([36],

formula 8.411.1). This gives the transition amplitudes a compact form

〈x|U(t)|x0〉|N→∞ = ix−x0Jx−x0(2t) . (4.61)

9It is important that we carry out the limit N →∞ at the beginning and not only work in a large (but
finite) N regime, where our following conclusions would be valid merely for x − x0 and t small enough
compare to N .
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The position distribution of the particle in the N →∞ limit then takes the form

Pt(x; x0)|N→∞ = |〈x|U(t)|x0〉|2N→∞ = (Jx−x0(2t))
2 . (4.62)

It is plotted in Figure 4.10(a).

Figure 4.10: (a) The position distribution Pt(x; 0)|N→∞ of a particle walking on the infinite

line graph, initially localized at position x0 = 0, is shown for the time interval t ∈ [0, 15]

and the sites x ∈ {0, . . . , 20} (Pt(x; 0)|N→∞ is symmetric with respect to x0). (b) The

variance of the distribution Pt(x; 0)|N→∞ grows quadratically with t.

Let us put x0 = 0 for simplicity. The moments of the probability distribution Pt(x; 0)|N→∞,

〈Xm〉(t) =
∞∑

x=−∞
xm (Jx(2t))

2 , (4.63)

can be expressed in the following way. For the Bessel J function it holds that

e±i2t sin z =
∞∑

x=−∞
Jx(2t)e

±ixz (4.64)

52



([36], formula 8.511.4). We may write

〈Xm〉(t) =
∞∑

x=−∞

∞∑

x′=−∞
xmJx(2t)Jx′(2t)

1

2π

∫ 2π

0

e−ix′zeixzdz

︸ ︷︷ ︸
δx,x′

=
∞∑

x=−∞

∞∑

x′=−∞
Jx(2t)Jx′(2t)

1

2π

∫ 2π

0

e−ix′z(−i)m ∂m

∂zm
eixzdz

=
1

2π

∫ 2π

0

( ∞∑

x′=−∞
Jx′(2t)e

−ix′z

)
(−i)m ∂m

∂zm

( ∞∑
x=−∞

Jx(2t)e
ixz

)
dz (4.65)

and using (4.64) we derive

〈Xm〉(t) =
(−i)m

2π

∫ 2π

0

e−i2t sin z ∂m

∂zm
ei2t sin zdz . (4.66)

It is not difficult to calculate first few moments explicitly:

〈X0〉(t) = 1 (4.67)

reflects a proper normalization of the probability distribution;

〈X1〉(t) = 0 (4.68)

is the mean value (generally, 〈X1〉(t) = x0);

〈X2〉(t) = 2t2 (4.69)

is in our case equal to the variance 〈X2〉 − 〈X〉2, which measures the spreading (or delo-

calization) of the particle (Fig.4.10(b));

〈X3〉(t) = 0 , (4.70)

〈X4〉(t) = 2t2(1 + 3t2) , etc . . . (4.71)

In general, 〈X2m+1〉(t) = 0 for all m ∈ N since Pt(x; 0)|N→∞ is an even function of x.10

An explicit calculation of the even moments 〈X2m〉(t), m ∈ N, requires to perform

repeated differentiation of a composite function. However, we can easily (with the aid of

[36], formula 3.621.3) find at least the leading term of 〈X2m〉(t) for arbitrary m:

〈X2m〉(t) =
(−i)2m

2π

∫ 2π

0

(i2t)2m(cos z)2mdz + . . . (lower orders of t)

=

(
2m

m

)
t2m + . . . . (4.72)

10It holds that
J−n(t) = (−1)nJn(t)

for n ∈ Z.
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4.4.3 Cyclic lattice with disordered couplings

We can generalize the previous model by allowing the “hopping amplitudes” for neighboring

sites to take values +1 or −1 (Fig.4.11). We hence get a family of Hamiltonians

Figure 4.11: The particle moves on a one dimensional periodic lattice with N sites. The

hopping amplitudes are allowed to take values εj = ±1, j = 1, . . . , N .

H~ε = −
N∑

x=1

εx (|x + 1〉〈x|+ |x〉〈x + 1|) , (4.73)

or

H~ε|x〉 = −(εx−1|x− 1〉+ εx|x + 1〉) , (4.74)

characterized by binary vectors

~ε = (ε1, ε2, . . . , εN) , εj ∈ {−1, 1} . (4.75)

The boundary conditions are again periodic, |x = N +1〉 = |x = 1〉 and |x = 0〉 = |x = N〉,
and we define ε0 := εN . Note that the undisordered Hamiltonian (4.44) is contained in

this family as the special case ~ε = (1, . . . , 1) ≡ ~1.

We shall see that the generalized problem is solvable for any configuration ~ε. Well, let

us try to solve the spectral problem for H~ε,

H~ε|ψ〉 = E|ψ〉 , (4.76)

which leads to the set of N equations

−εx−1〈x− 1|ψ〉 − εx〈x + 1|ψ〉 = E〈x|ψ〉 , x = 1, . . . , N (4.77)
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for the components of |ψ〉 in the X-representation. We may regard this as a linear recur-

rence relation for a finite sequence {〈x|ψ〉}N+1
x=0 subject to the boundary conditions

〈0|ψ〉 = 〈N |ψ〉
〈N + 1|ψ〉 = 〈1|ψ〉 . (4.78)

After multiplying (4.77) by
∏N

j=x εj and rearranging the terms we face (keep in mind that

ε2
x = 1 for all x)

(
N∏

j=x+1

εj

)
〈x+1|ψ〉+E

(
N∏

j=x

εj

)
〈x|ψ〉+

(
N∏

j=x−1

εj

)
〈x−1|ψ〉 = 0 , x = 1, . . . , N . (4.79)

Now, for ~ε = ~1 we know that the Hamiltonian is the one without disorder and its

eigenvectors are given by (4.47). Fortunately, we can get rid of the ~ε dependence in the

recurrence (4.79) by making the ansatz

〈x|ψ〉 =

(
N∏

j=x

εj

)
ei 2π

N
ωx , x = 0, . . . , N + 1 . (4.80)

(We use the usual convention
∏b

j=a(. . .) = 1 if a > b.) One can easily convince oneself that

such |ψ〉 satisfies the equations (4.79) provided that

E = −2 cos

(
2π

N
ω

)
. (4.81)

The parameter ω is restricted by the boundary conditions (4.78) that for our choice of |ψ〉
read

(
N∏

j=0

εj

)
= εNei2πω (4.82)

ei 2π
N

ω(N+1) =

(
N∏

j=1

εj

)
ei 2π

N
ω . (4.83)

Since, by definition, ε0 = εN , these two conditions are equivalent and yield

ei2πω = sgn(~ε) , (4.84)

where we denoted

sgn(~ε) ≡
N∏

j=1

εj = ±1 . (4.85)
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If sgn(~ε) = +1,

ω = k , k = 0, . . . , N − 1 . (4.86)

The eigenvalues of H~ε are

E+
k = −2 cos

(
2π

N
k

)
, k = 0, . . . , N − 1 (4.87)

and the (orthonormal) eigenvectors of H~ε read

|k+ε〉 =
1√
N

N∑
x=1

(
N∏

j=x

εj

)
ei 2π

N
kx|x〉 , k = 0, . . . , N − 1 . (4.88)

If sgn(~ε) = −1,

ω = k +
1

2
, k = 0, . . . , N − 1 . (4.89)

The eigenvalues of H~ε are

E−
k = −2 cos

(
2π

N
k +

π

N

)
, k = 0, . . . , N − 1 (4.90)

and the (orthonormal) eigenvectors of H~ε read

|k−ε〉 =
1√
N

N∑
x=1

(
N∏

j=x

εj

)
ei π

N
xei 2π

N
kx|x〉 , k = 0, . . . , N − 1 . (4.91)

Let’s check the orthonormality of the vectors |k+ε〉:

〈k+ε
1 |k+ε

2 〉 =
1

N

∑
x1,x2

(
N∏

j=x1

εj

)(
N∏

j=x2

εj

)
e−i 2π

N
k1x1ei 2π

N
k2x2〈x1|x2〉 (4.92)

=
1

N

∑
x1

ei 2π
N

(k2−k1)x1 = δk1,k2 . (4.93)

In the same way we can prove the orthonormality of the vectors |k−ε〉.
Once the eigenvectors are known, it is easy to probe the time evolution of the system.

Depending on sgn(~ε), the transition amplitudes are either

〈x|U+ε(t)|x0〉 = 〈x|e−itH~ε|x0〉 =
∑

k

e−itE+ε
k 〈x|k+ε〉〈k+ε|x0〉

=
1

N

(
N∏

j=x

εj

)(
N∏

j=x0

εj

)
N∑

k=1

ei2t cos( 2π
N

k)ei 2π
N

k(x−x0) (4.94)
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for sgn(~ε) = +1, or

〈x|U−ε(t)|x0〉 = 〈x|e−itH~ε|x0〉 =
∑

k

e−itE−ε
k 〈x|k−ε〉〈k−ε|x0〉

=
1

N

(
N∏

j=x

εj

)(
N∏

j=x0

εj

)
ei π

N
(x−x0)

N∑

k=1

ei2t cos( 2π
N

k+ π
N )ei 2π

N
k(x−x0) (4.95)

for sgn(~ε) = −1. To obtain the position distribution after time t, starting with a localized

state |ψ(0)〉 = |x0〉, we calculate the modulus squared of the transition amplitudes (4.94)

and (4.95). Clearly, the results only depend on sgn(~ε), not on the details εj of the particular

configuration ~ε:

P+
t (x; x0) =

1

N2

∣∣∣∣∣
N∑

k=1

ei2t cos( 2π
N

k)ei 2π
N

k(x−x0)

∣∣∣∣∣

2

for sgn(~ε) = +1 ,

P−
t (x; x0) =

1

N2

∣∣∣∣∣
N∑

k=1

ei2t cos( 2π
N

k+ π
N )ei 2π

N
k(x−x0)

∣∣∣∣∣

2

for sgn(~ε) = −1 . (4.96)

The position distributions P+
t (x; x0) and P+

t (x; x0) are plotted at Fig.4.12 and Fig.4.13,

respectively, for the cycle of length N = 200, the initial state |x0〉 = |100〉, and times t =

20, 50. The particle (initially fully localized) spreads around the cycle, i.e. its localization

is lost. This holds for both sgn(~ε) = +1 and −1 and the corresponding plots are in fact

hardly told apart by eye.

Remark: Yet, it can be important whether we have ~ε such that sgn(~ε) = +1 or −1.

Consider two simple examples of cycles of size N = 4 with the hopping amplitudes as

pictured in Fig.4.14. Let us choose the initial state |x0〉 = |1〉 and calculate the particle’s

distribution after a time t. For each site |x〉 we obtain a function of t, P±
t (x; x0). The results

for (a) sgn(~ε) = +1 and (b) sgn(~ε) = −1 are plotted at Fig.4.15(a) and (b), respectively.

The interference phenomena change dramatically the propagation of the particle. In

particular, in the case (b) the particle can never (for no t) be found at the opposite corner

of the square (position |x = 3〉). This is because the particle’s histories traveling from |1〉
to |3〉 via |2〉 pick up phases opposite to those traveling via |4〉.

4.5 Numerical results for one anyon walk on a peri-

odic ladder lattice

We have seen in the previous section that a particle living on a one dimensional lattice

with nearest neighbour interaction tends to spread for any choice of disorder ~ε in the
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Figure 4.12: The position distribution P+
t (x; 100) of a particle evolving on a cycle graph

with N = 200 vertices, from the initially localized state |x = 100〉. The disorder of the

Hamiltonian H~ε is characterized by the vector ~ε with sgn(~ε) = +1. Two time instances

are shown: t = 20 and t = 50.

Figure 4.13: The position distribution P−
t (x; 100) of a particle evolving on a cycle graph

with N = 200 vertices, from the initially localized state |x = 100〉. The disorder of the

Hamiltonian H~ε is characterized by the vector ~ε with sgn(~ε) = −1. Two time instances

are shown: t = 20 and t = 50.
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Figure 4.14: (a) A lattice corresponding to ~ε = (1, 1, 1, 1), sgn(~ε) = +1. (b) A lattice with

hopping amplitudes corresponding to ~ε = (1, 1,−1, 1), sgn(~ε) = −1. The initial state is

|x0〉 = |1〉.

Figure 4.15: The probabilities of finding a particle initiated at vertex |1〉 on a square lattice

(see Fig.4.14) are plotted as functions of time t for various sites |x〉. (a) The case when

sgn(~ε) = +1. (b) The case when sgn(~ε) = −1. The two cases differ most significantly at

the site |3〉.

Hamiltonian H~ε (4.73), specially for the Hamiltonian H0 (4.44). For an infinite lattice,

the variance of the resulting position distribution grows as ∼ t2 (4.69). In the finite case,

when N is the number of sites of the periodic lattice, this quadratic dependence holds until

the spreading wave function starts to interfere with itself as the two parts propagating in

opposite directions meet and mix together.

We have also seen that the presence of −1 hopping terms in the Hamiltonian causes
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destructive interference (recall Fig.4.15) that can play an important role for small cycles,

where the wave function mixes almost immediately.

For the periodic ladder lattice (4.8) these two attributes coexist. Since for a general

configuration of the m anyons we are unable to diagonalize the corresponding Hamiltonian

(4.38) analytically, we turn to numerics.

4.5.1 Regular disorder – delocalization

Let us first consider the case of regularly placed m anyons. Suppose there is an m anyon

on every second plaquette. The Hamiltonian HI
e , which we will denote simply H from now

on, is of the form

H ≡ HI
e = −h (1⊗H2 + H0 ⊗ |0〉〈0|+ H~ε ⊗ |1〉〈1|) (4.97)

with

εx =

{
1 if x is odd

−1 if x is even .
(4.98)

We choose a localized initial state |ψ0〉 = |x0〉 ⊗ |0〉 and calculate |ψ(t)〉 = U(t)|ψ0〉 —

the wave function after a time t. To find U(t) = e−itH , it is necessary to diagonalize the

Hamiltonian H, i.e. to find a diagonal matrix A and a transformation matrix S such that

H = SAS−1. This step is done numerically. We are interested in the position distribution

along the horizontal axis of the ladder

P reg
t (x; x0) =

1∑
y=0

〈x, y|ψ(t)〉〈ψ(t)|x, y〉 = |〈x, 0|U(t)|ψ0〉|2 + |〈x, 1|U(t)|ψ0〉|2 . (4.99)

From P reg
t (x; x0) we calculate the corresponding variance

V arreg(t) =
N∑

x=1

x2P reg
t (x; x0)−

(
N∑

x=1

xP reg
t (x; x0)

)2

(4.100)

that tells us quantitatively about the spreading of the particle.

The time scale is defined by the perturbation strength h (~ = 1 from the very begin-

ning). It is convenient to introduce the dimensionless time

τ := ht . (4.101)

The numerical results are presented for the ladder horizontal size N = 200, the initial

position x0 = 100 and for τ ∈ [0, 200] with time-step ∆τ = 1. Figure 4.16 shows the
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Figure 4.16: The position distributions P reg
t (x; 100) are shown for τ = 20, 50, 100, 200. The

particle, initially localized around x0 = 100, fills up the ladder about the time τ = 100.

position distributions P reg
t (x; 100) for τ = 20, 50, 100, 200, Figure 4.17 illustrates how the

variance V arreg changes with time. At τ = 100 the variance reaches its maximum

value V arreg = 3128.14. This is comparable to the variance of the uniform distribution

P uni(x) = 1
N

, which comes out as

V aruni =
1

N

N∑
x=1

x2 −
(

1

N

N∑
x=1

x

)2

=
N2 − 1

12
= 3333.25 . (4.102)

The walker, clearly, gets delocalized — logical error is likely to occur at τ = 100 = N
2
.

4.5.2 Random disorder – localization

More realistically, m errors occur at random positions, they don’t form a regular pattern.

We will consider a model in which an m anyon occupies a given plaquette with probability
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Figure 4.17: The variance of the walker’s position distribution for regularly placed m

anyons, V arreg, as a function of the dimensionless time τ grows as ∼ τ 2 up to the point

(τ = 100, V arreg = 3128.14) when oppositely propagating parts of the wave function |ψ(t)〉
meet.

1
2
. This probability is equal for all plaquettes.11 That is, on average there should be one

half of the plaquettes populated. The pattern, however, is random and this fact proves to

be fundamental for the motion of the e anyonic walker.

We are interested in the quantities averaged over all configurations (patterns) M ⊆
{1, . . . , N} of the m anyons (see (4.30)). N denotes the number of plaquettes as usually.

There are 2N possible configurations and all of them are realized with the equal probability
1

2N . Let us start with a localized initial state |ψ0〉 = |x0〉⊗ |0〉. The M -averaged horizontal

position distribution of the walker after a time t reads

P ran
t (x; x0) =

1

2N

∑

M⊆{1,...,N}

(∣∣〈x, 0|UM(t)|ψ0〉
∣∣2 +

∣∣〈x, 1|UM(t)|ψ0〉
∣∣2

)
, (4.103)

where UM(t) is the evolution operator corresponding to the Hamiltonian HI
e (4.73) with

the disorder ~ε specified by the particular set M ,

εx =

{
−1 if x ∈ M

1 if x 6∈ M .
(4.104)

The M -averaged variance V arran(t) is calculated from P ran
t (x; x0) in a standard way,

V arran(t) =
N∑

x=1

x2P ran
t (x; x0)−

(
N∑

x=1

xP ran
t (x; x0)

)2

. (4.105)

11This yields a rather dense (and perhaps unrealistic) population of the m anyons. We want to distill
the effect of a random pattern even when the lattice that we are able to probe numerically is rather small.
We believe that the effects would be similar for large lattices and sparsely distributed m anyons.
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We present our numerical results, again, for N = 200, x0 = 100 and τ ∈ [0, 200] with

∆τ = 1. Since it is computationally impossible to average over all 2200 configurations M ,

we randomly chose 1000. The results are shown at Figure 4.18 (position distributions of

the walker at τ = 20, 50, 100, 200) and at Figure 4.19 (variance as a function of τ).

Figure 4.18: The average position distributions in the case of a random disorder,

P ran
t (x; 100), are shown for τ = 20, 50, 100, 200. They don’t change significantly with

time. The particle remains localized around its initial position |x0〉.

The walker’s position distributions are symmetric and maintain their characteristic

shape — one sharp peak at the initial position x0. As the distance between x and x0

increases, the probability of finding the particle at position x exponentially decays. This is

a general feature of disordered quantum systems known as the Anderson localization (see

the original Anderson’s paper [6] or a recent overview [34]). A quantum particle living in a

disordered environment remains localized due to the interference phenomena. Both words

— remains and localized — are important. When exponentially decaying distributions

are observed, one also needs to check that the characteristic width of the distribution, the
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Figure 4.19: The variance of the walker’s position distribution for randomly placed m

anyons, V arran, as a function of the dimensionless time τ grows slowly and is much smaller

than the variance V arreg in the case of the regular disorder (Fig.4.17).

localization length, does not grow with time ad infinitum.

Figure 4.20 shows that our position distributions P ran
t (x; x0) can be fit to a decaying

exponential reasonably well; the localization length being 3.5 at τ = 200. The time de-

pendence of the width of the position distribution can be read off from Fig.4.19, i.e. from

the time evolution of the variance, which grows slowly of perhaps even stops growing.

Although our numerical results show only the time range τ ∈ [0, 200] and are of limited

accuracy, they support strongly our final conclusion: An e anyon living on a ladder-like

lattice in a random environment of static m anyons remains localized, it’s motion is expo-

nentially suppressed. As a consequence, the logical errors of the corresponding quantum

memory are also exponentially suppressed — the time it takes for a logical error to occur

is exponentially large in the size of the system.
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Figure 4.20: The position distributions P ran
t (x; 100) can be fit to a decaying exponential.

We show the fit for the “right wing” of the distribution at τ = 200. The fit is e−
x−x0
3.5 up

to a constant prefactor. The localization length is 3.5 in this case.
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Chapter 5

Conclusion

We have reviewed the theory (Chapter 2) as well as the experimental aspects (Chapter 3)

of two dimensional particles with exotic exchange statistics called anyons.

In the last chapter we investigated the propagation of anyons on the toric code to inspect

the stability of this topological quantum memory. We used a simplified model defined on

a strip with a ladder-like lattice. The evolution of a quantum particle (a continuous-time

quantum walk) was exactly solved in one dimension for a finite cycle (4.51), an infinite

line (4.61) and a finite cycle with disordered couplings between the neighboring vertices

(4.94, 4.95) (they were allowed to take values +1 or −1). We showed that any disorder of

the type under consideration leads to the same delocalization behavior as in the case of

uniform coupling. Subsequently, we studied numerically the propagation of an anyon on

the ladder lattice with disorder and compared two cases. When the disorder was regular,

periodic, the particle delocalized (Fig.4.16 and 4.17). On the other hand, in the case of a

random disorder, the Anderson localization effect took place and the anyon remained at its

initial position (Fig.4.18 and 4.19). More precisely, its wave function decayed exponentially

with the distance.

Hence, we have shown (in analogy with [7]) that a random disorder imprinted in a

topological quantum memory can be used to improve its robustness against logical errors.
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Appendix A

Braid group

Braids are formed when n points on a horizontal plane are connected by n strands to

n points on another horizontal plane, parallel to the first one, directly below the first n

points. The strings are not allowed to go back upwards at any point in their travel. Two

braids are considered the same (or equivalent) if one can be transformed into the other via

an ambient isotopy of the space (a continuous deformation that doesn’t cross the strings)

that fixes the endpoints of each string (Fig.A.1).

Figure A.1: An example of equivalent braids. One can be transformed into the other via

an ambient isotopy of the space that fixes the endpoints of each string.

In order to describe a given braid we define the braid group. The braid group Bn of

n-strand braids is a group generated by n− 1 symbols σ1, ..., σn−1 (depicted in Fig.A.2(a))

with the operation of concatenation (Fig.A.2(b)). The identity element is the diagram

with “n straight lines” (Fig.A.3(a)) and the inverse of a generator σj, denoted σ−1
j , has the

type of crossing opposite from σj (Fig.A.3(b)).

The generators of the braid group satisfy two additional relations:

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, ..., n− 2} , (A.1)

σiσj = σjσi for i, j ∈ {1, ..., n− 1}, |i− j| ≥ 2 . (A.2)
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Figure A.2: (a) The generators σj of the braid group Bn (j runs from 1 to n− 1). (b) The

braid group operation of concatenation — one braid is put on top of the other and the

corresponding strands are glued together.

Figure A.3: (a) The identity element in the braid group Bn. (b) The inverses of the

generators σj of Bn.

These relations are pictured in Figure A.4. The group relation σ−1
j σj = σjσ

−1
j = 1 together

with the relations (A.1) and (A.2) guarantee that any two words in braid generators (and

their inverses) represent the same braid if and only if they are the same element of Bn.

These three relations correspond to the three Reidemeister moves — the three knot pre-

serving transformations (for an introduction into the knot theory see e.g. [37]). This group

approach to braids is due to Emil Artin [38] and therefore Bn is sometimes called the Artin

braid group.

Physical relevance of the braid group is apparent from the following observation. Con-

sider n indistinguishable particles in a plane (Fig.A.5), which we will identify with the

complex plane C, and assume two particles cannot occupy the same position. The config-
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Figure A.4: The braid group relations: (a) represents the relation A.1 and (b) represents

the relation A.2. The braid on the left hand side is the same as that on the right hand

side.

Figure A.5: Four indistinguishable particles in a plane evolving in time. As the particles

move around one another, their worldlines in the 2+1 dimensional spacetime constitute a

braid (provided that the initial and the final configuration is the same). The braid group

B4 is the fundamental group of the space of four indistinguishable particles.

uration space of this physical system is

X = (Cn\∆)/Sn , (A.3)

where ∆ = {(z1, ..., zn) ∈ Cn | zi = zj for some i 6= j} and Sn is the permutation group

of n symbols. As the particles move around in the plane, their worldlines trace curves

in the 2 + 1 dimensional spacetime as depicted in Figure A.5. One can prove a plausible

statement that the braid group Bn is the fundamental group of the space X, i.e.

Bn = π1(X). (A.4)
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A.1 Representations of the braid group

One-dimensional unitary representations of the braid group Bn are easy to classify. Let

us assign complex numbers eiαj , αj ∈ [0, 2π], to the generators σj. The relation (A.2) is

clearly satisfied. The other braid group relation (A.1) translates into

eiαjeiαj+1eiαj = eiαj+1eiαjeiαj+1 for j ∈ {1, 2, ..., n− 2} , (A.5)

which enforces eiα1 = . . . = eiαn−1 ≡ eiα. The angle α is the only parameter characterizing

the particular representation

ρα : σj 7→ eiα , j ∈ {1, 2, ..., n− 1} . (A.6)

We can see that the representation ρα is not faithful as it does not distinguish distinct

braid group elements σjσj+1 and σj+1σj. On the other hand, unlike the symmetric group

Sn, ρα does tell apart the identity and the elements σ2
j (provided that α 6= 0, π). In fact,

Sn differs from Bn only by the additional requirement σ2
j = 1, which allows only two

one-dimensional unitary representations ρ+ : σj 7→ 1 and ρ− : σj 7→ −1.

The braid group representation theory in higher dimensions is much richer and much

more complicated. It is connected with the polynomial invariants of knots. An interested

reader is directed to [39] for an overview.
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