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antńı potenciály, Berryho fáze
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Chapter 1

Introduction

Supersymmetry (SUSY) arose as a response to attempts by physicists to obtain a unified
description of all basic interactions of nature. SUSY is, by definition, symmetry between
fermions (i.e. matter or building blocks of matter) and bosons (i.e. field carriers). It may
be noted here that so far there has been no experimental evidence of SUSY being realized in
nature. Nevertheless, the ideas of SUSY have stimulated new approaches to other branches
of physics like atomic, molecular, nuclear, statistical and condensed matter physics as well as
nonrelativistic quantum mechanics.

Supersymmetric quantum mechanics (SUSY QM) was originally developed as a model for
testing quantum field theory methods, but it was soon clear that this field was interesting in
its own right. Gradually a whole technology was evolved based on SUSY to understand the
solvable potential problems and even to discover new solvable potentials. The reason why
certain potentials are exactly solvable can be understood in terms of few basic ideas which
include supersymmetric partner potentials and shape invariance.

The Hamiltonian for SUSY QM is a 2 × 2 diagonal matrix Hamiltonian containing two
separate Hamiltonians whose eigenvalues, eigenfunctions and scattering properties are, as we
shall see, related because of existence of fermionic operators which commute with the matrix
Hamiltonian.

At the end of this thesis I introduce the concept of geometric phase in QM (usually named
after its very founder M.V.Berry). We shall see that during a cycling quantum evolution the
phase change has two parts: the usual dynamical part and the geometric part, which is of
our interest here, because it can have observable consequences.

Let me start with some fundamentals from one dimensional QM which we’ll use later on
in the text.
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Chapter 2

Some Fundamental Theorems from

One Dimensional Quantum

Mechanics

In this chapter, we are concerned with the QM properties of a particle constrained to move
along a straight line under the influence of a time-independent potential V (x).

One dimensional quantum mechanical problems are not a pure mathematical construct.
They appear, in fact, quite frequently when one studies higher dimensional problems. For
instance, when we encounter a 2-D Hamiltonian of the form

H = − ~
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V1(x) + V2(y) =

(
− ~

2

2m

∂2

∂x2
+ V1(x)

)

︸ ︷︷ ︸
H1

+
(
− ~

2

2m

∂2

∂y2
+ V2(y)

)

︸ ︷︷ ︸
H2

,

we can solve the time-independent Schrödinger equation

Hψ = Eψ (2.1)

using the method of separation of variables, i.e. to write ψ(x, y) = ψ1(x)ψ2(y). Then the
equation (2.1) reads

(H1 + H2)ψ1(x)ψ2(y) = ψ2(y)H1ψ1(x) + ψ1(x)H2ψ2(y) = Eψ1(x)ψ2(y) .

Dividing by ψ1(x)ψ2(y) separates the x and y dependence of the terms which hence must be
constant:

H1ψ1(x)
ψ1(x)︸ ︷︷ ︸
≡E1

+
H2ψ2(y)
ψ2(y)︸ ︷︷ ︸
≡E2

= E .

Thus the 2-D problem has been transformed into two 1-D problems: H1ψ1(x) = E1ψ1(x) and
H2ψ2(y) = E2ψ2(y). Generalization to higher dimensions is straightforward.
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Figure 2.1: Generic shape of the potential V (x) discussed throughout the chapter 2.

I will concentrate on the properties of a potential V (x) with the generic shape shown on
the Figure 2.1 and investigate the time-independent Schrödinger equation

Hψ = − ~
2

2m
ψ′′ + V (x)ψ = Eψ

or equivalently

ψ′′ +
2m

~2
(E − V (x))ψ = 0 . (2.2)

In the following two sections I state some general properties of eigenfunctions for both
bound state and continuum situations. More rigorous derivation can be found in [3].

2.1 General Properties of Bound States

Let us first focus on the region I on the Figure 2.1 where E < V±. The eigenfunction ψ(x)
must be square integrable, so it must approach zero (fast enough) as x goes to ±∞.

At x → −∞ our time-independent Schrödinger equation (2.2) takes the asymptotic form

ψ′′ − 2m

~2
(V− − E)︸ ︷︷ ︸

>0

ψ = 0

with the solution (that goes to 0 as x → −∞)

ψ−(x) = C−ek−x , k− =

√
2m(V− − E)

~
.

At x → +∞ we obtain analogously the solution

ψ+(x) = C+ek+x , k+ =

√
2m(V+ − E)

~
.

Inside of the potential well (where E > V (x)) we have the equation

ψ′′ +
2m

~2
(E − V (x))︸ ︷︷ ︸

>0

ψ = 0 ,
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whose solution is oscillatory. The requirement of continuity of ψ and ψ′ on the potential well
fixes E, which turns out1 to be discrete. In addition, because ψ (being continuous) is bounded
and goes exponentially to 0 at x → ±∞, it is normalizable.

Since H is self-adjoint, its eigenvalues E0, E1, ... are real and since we assume no addi-
tional degrees of freedom (such as spin) one can show that they are non-degenerate.2 It also
follows from self-adjointness of H that the eigenfunctions ψ0, ψ1, ... are mutually orthogonal.
Furthermore, thanks to non-degeneracy of the eigenvalues, the eigenfunctions can be chosen
to be real.3

To get a little bit feeling for what the eigenfunctions look like I state the oscillation
theorem, which holds for the bound states the energy located in the region I of the Fig.2.1:
If the eigenvalues are ordered according to increasing energy, i.e. E0 < E1 < E2 < ..., then
the corresponding eigenfunctions are automatically ordered in the number of nodes, with the
eigenfunction ψn having n nodes.4 In addition, ψn+1 has one node located between each pair
of consecutive zeros in ψn (including the zeros at x → ±∞).5

1See [3], p.95
2Assume ψ1 and ψ2 are solutions of (2.2):

ψ′′1 +
2m

~2
(E − V (x))ψ1 = 0 , ψ′′2 +

2m

~2
(E − V (x))ψ2 = 0 .

This implies

ψ′′1 ψ2 = ψ′′2 ψ1

(ψ′1ψ2 − ψ′2ψ1)
′ = 0

ψ′1ψ2 − ψ′2ψ1 = K .

But K = 0, because ψ1(±∞) = ψ2(±∞) = 0. Hence

ψ′1
ψ1

=
ψ′2
ψ2

and so ψ1 = Cψ2, i.e. states ψ1 and ψ2 correspond to the same physical state.
3If ψ is a solution of (2.2) then both <ψ and =ψ must be solutions as well. From non-degeneracy of the

spectrum it follows that =ψ = C<ψ and

ψ = <ψ + i=ψ = (1 + iC)<ψ .

4For details see [3], p.95
5Let a, b ∈ R ∪ {±∞} be the two consecutive zeros of ψn, n = 0, 1, .... From

ψ′′n +
2m

~2
(En − V (x))ψn = 0 , ψ′′n+1 +

2m

~2
(En+1 − V (x))ψn+1 = 0

we get (multiplying the first equality by ψn+1, the second by ψn and subtracting them)

(ψ′nψn+1 − ψ′n+1ψn)′ = ψ′′nψn+1 − ψ′′n+1ψn =
2m

~2
(En+1 − En)ψnψn+1 .

Integrating from a to b and using ψn(a) = ψn(b) = 0 yields

[ψ′nψn+1]
b
a =

2m

~2
(En+1 − En︸ ︷︷ ︸

>0

)

∫ b

a

ψn(x)ψn+1(x)dx .
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2.2 General Properties of Continuum States and Scattering

See again Fig.2.1. In the region II, i.e. for V+ < E < V−, the spectrum is continuous and
non-degenerate.

For x → −∞ the equation (2.2) takes form

ψ′′ − 2m

~2
(V− − E)︸ ︷︷ ︸

>0

ψ = 0

with just one bounded solution (which tends to 0 at x → −∞)

ψ−(x) = C−ek−x , k− =

√
2m(V− − E)

~
.

On the other hand, in asymptotic neighborhood of +∞ the Schrödinger equation

ψ′′ +
2m

~2
(E − V+)︸ ︷︷ ︸

>0

ψ = 0

has oscillatory solutions in the form of stationary plane waves

ψ(x) = A cos(kx + δ) , k =

√
2m(E − V+)

~
.

A and δ are constants such that ψ, ψ′ are continuous.
In the region III of Fig.2.1 (where E > V−) the spectrum is continuous and twice degen-

erate. Since E > V− > V+ the asymptotic states at ±∞ are described by plane waves

ψ±(x) = A±eik±x + B±e−ik±x

The degeneracy follows from the fact that there are two independent solutions, both bounded
at ±∞. (Whereas in region II one of the solutions became infinity and therefore had to be
rejected.)

Spectrum is continuous as there is no condition fixing E.
In the region III we may construct wave functions which are partly transmitted and partly

reflected by V (x):

ψ(x) =

{
eik−x + R(k−)e−ik−x x → −∞
T (k−)eik+x x → +∞ ,

where R(k−), T (k−)6 are called reflection and transmission amplitudes (or coefficients), re-
spectively. Conservation of probability guarantees that

|T (k−)|2 + |R(k−)|2 = 1 .

In the interval (a, b) ψn keeps the same sign (say ψn > 0). Thus ψ′n(a) ≥ 0 and ψ′n(b) ≤ 0. Hence ψn+1

certainly changes sign in (a, b). If not (say ψn+1 > 0), then the RHS would be > 0, but the LHS would be

≤ 0. Because ψn+1 has just one more node than ψn, it obviously cannot have more than one node between

each pair of consecutive zeros of ψn.

6R and T depend on the energy E =
~2k2

−
2m

+ V− =
~2k2

+
2m

+ V+ of the wave function ψ. I use this ”k−
convention” although I could have equally well written R(k+), T (k+) or R(E), T (E).
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Chapter 3

Supersymmetric Quantum

Mechanics (SUSY QM)

The fact that certain Hamiltonians can be factorized in the way that is shown at the beginning
of this chapter has many consequences. Later on we will discuss some of them to illustrate
that SUSY QM is an interesting as well as a useful concept.

3.1 Factorization of a General Hamiltonian

Let us have a single particle Hamiltonian

H1 = − ~
2

2m

d2

dx2
+ V1(x)

with some potential V1(x) and suppose the ground state wave function ψ0(x) is specified. It is
quite an interesting observation that ψ0 also specifies the potential V1(x) (up to a constant).
Without loss of generality, we can choose the ground state energy E

(1)
0 of H1 to be zero.1

Inserting ψ0 into the time-independent Schrödinger equation then yields

− ~
2

2m

d2ψ0

dx2
+ V1(x)ψ0(x) = 0 ,

which can be rewritten (using the fact that ψ0 is nodeless) as

V1(x) =
~2

2m

ψ′′0(x)
ψ0(x)

. (3.1)

Notice that rescaling ψ0(x) → eiϕψ0(x) doesn’t give different V1(x).
Now I factorize our Hamiltonian as follows:

H1 = A†A ,

1If it wasn’t, we would just work with shifted Hamiltonian H1 − E
(1)
0 .
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where
A =

~√
2m

d

dx
+ W (x) , A† = − ~√

2m

d

dx
+ W (x) . (3.2)

To find W (x), we expand A†A:

H1 = A†A =
(
− ~√

2m

d

dx
+ W (x)

) (
~√
2m

d

dx
+ W (x)

)
= − ~

2

2m

d2

dx2
+W 2(x)− ~√

2m
W ′(x) .

This allows us to identify

V1(x) = W 2(x)− ~√
2m

W ′(x) , (3.3)

which is the Riccati equation for W (x). One can either solve the equation (3.3) by standard
manners ([10]) or use a little trick.

We know that ψ0 must obey H1ψ0 = A†Aψ0 = 0, which is satisfied automatically if
Aψ0 = 0. This requirement means (in view of the relation (3.2))

0 = Aψ0 =
(

~√
2m

d

dx
+ W (x)

)
ψ0

⇒ W (x) = − ~√
2m

ψ′0(x)
ψ0(x)

. (3.4)

It is obvious that this W (x) really satisfies (3.3), once we take into account the expression
for V1(x) (3.1). The expression (3.4) is not the only solution of (3.3), however, the other
solutions are more complicated and we shall not use them. The quantity W (x) defined by
(3.4) is referred to as the superpotential in SUSY QM literature.

The next step in constructing the SUSY theory is to define the operator

H2 := AA† = − ~
2

2m

d2

dx2
+ W 2(x) +

~√
2m

W ′(x) .

H2 is in fact a Hamiltonian corresponding to a new potential V2(x):

H2 = − ~
2

2m

d2

dx2
+ V2(x) , V2(x) = W 2(x) +

~√
2m

W ′(x) . (3.5)

The potentials V1(x) and V2(x) are known as supersymmetric partner (or superpartner) po-
tentials. Similarly, H1 and H2 are called superpartner Hamiltonians.

3.1.1 Relation of the Eigenstates of Two Superpartner Hamiltonians

As we shall see in this paragraph, the eigenstates (i.e. the energy eigenvalues and the eigen-
functions) of H1 and H2 are related.

Let us take an arbitrary eigenstate ψ
(1)
n of H1. Then the following holds for all n ≥ 0:

H1ψ
(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n

12



implies
H2(Aψ(1)

n ) = AA†Aψ(1)
n = E(1)

n (Aψ(1)
n ) . (3.6)

Conversely, if we take an arbitrary eigenstate ψ
(2)
n of H2, then

H2ψ
(2)
n = AA†ψ(2)

n = E(2)
n ψ(2)

n

implies
H1(A†ψ(2)

n ) = A†AA†ψ(2)
n = E(2)

n (A†ψ(2)
n ) . (3.7)

Since both H1 and H2 are positive operators2 their spectra are subsets of [0,+∞).
Now I show that zero is not an eigenvalue of H2. For this purpose let’s realize that there

is no non-zero square integrable function ψ such that A†ψ = 0.3 Suppose now that there
exists a (non-zero) wave function ψ̃ such that H2ψ̃ = 0. Then

0 6= ‖A†ψ̃‖2 = 〈ψ̃ | H2 | ψ̃〉 = 0

and so zero is not in the spectrum of H2.
From (3.6) we can see that E

(1)
n is also an eigenvalue of H2 if Aψ

(1)
n 6= 0, which is violated

(i.e. Aψ
(1)
n = 0) only for n = 0.4 Similarly, from (3.7) it follows that E

(2)
n is also an eigenvalue

of H1 if A†ψ(2)
n 6= 0, but this holds for all (square integrable) eigenfunctions as shown in the

footnote 3.
We conclude with the statement that the eigenvalues of H1 and H2 (ordered increasingly)

are related by (n = 0, 1, ...)
E(2)

n = E
(1)
n+1 , E

(1)
0 = 0 . (3.8)

Further, as seen from (3.6) and (3.7) and using the spectra relation (3.8), the eigenfunctions
of H1 and H2 are proportional to each other:

ψ
(1)
n+1 ∝ A†ψ(2)

n , ψ(2)
n ∝ Aψ

(1)
n+1 ,

2H1 = A†A ⇒ 〈ψ | H1 | ψ〉 = ‖Aψ‖2 , H2 = AA† ⇒ 〈ψ | H2 | ψ〉 = ‖A†ψ‖2
3Because the wave function ψ

(1)
0 satisfies

Aψ
(1)
0 =

(
~√
2m

d

dx
+ W (x)

)
ψ

(1)
0 = 0 ,

we can write explicitly ψ
(1)
0 (x) = C1 exp

(
−
√

2m
~

∫ x

a
W (y)dy

)
. Our condition for ψ

A†ψ =

(
− ~√

2m

d

dx
+ W (x)

)
ψ = 0

yields ψ(x) = C2 exp
(√

2m
~

∫ x

a
W (y)dy

)
. Thus ψ

(1)
0 ψ = C1C2 6= 0. Now it is obvious that since ψ

(1)
0 is square

integrable (and hence vanishes at ±∞), ψ cannot be. I shall use similar argument in the section 3.2 talking

about broken supersymmetry.
4The equation Aψ =

(
~√
2m

d
dx

+ W (x)
)

ψ = 0 has only one solution (up to a multiplicative constant) and

we know that Aψ0 = 0 from the definition of W (x) (3.4).
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for n = 0, 1, ... . To get the proportionality constants cn, we use the normalization condition.
Assume that {ψ(1)

n }n are normalized. We want {ψ(2)
n }n to be normalized as well. We get

1 = 〈ψ(1)
n+1 | ψ(1)

n+1〉 = 〈cnA†ψ(2)
n | cnA†ψ(2)

n 〉 = |cn|2〈ψ(2)
n | AA†︸︷︷︸

H2

| ψ(2)
n 〉 = |cn|2E(2)

n

and our choice of cn’s as positive real numbers leads us to the relation between the super-
partner eigenfunctions

ψ
(1)
n+1 =

1√
E

(2)
n

A†ψ(2)
n , (3.9)

for n = 0, 1, ... . Similarly we obtain

ψ(2)
n =

1√
E

(1)
n+1

Aψ
(1)
n+1 , (3.10)

where again n = 0, 1, ... .
So we can say that knowing all the eigenfunctions of H1, we can determine the eigen-

functions of H2 using the operator A and, vice versa, using A† we can reconstruct all the
eigenfunctions of H1 from those of H2 (except for the ground state). The correspondence is
illustrated in Fig.3.1

H1 H2

0 = E0

(1)

E1

(1)
E0

(2)

E1

(2)
E2

(1)

.

.

.

.

.

.

.

.

.

ø0

(1)

ø = 0

ø0

(2)

ø1

(2)

ø1

(1)

ø2

(1)

A
†

A

A

Figure 3.1: Energy levels of two (unbroken) supersymmetric partner Hamiltonians H1 and
H2. The energy levels are degenerate except that H1 has one extra state at zero energy. The
action of the operators A and A† is displayed and the number of nodes of the eigenfunctions
of H1 and H2 is indicated.

3.1.2 Example: Infinite Square Well and Its Superpartner

We have seen that if there is an exactly solvable potential with at least one bound state, then
we can always construct its SUSY partner potential and it is also exactly solvable.
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Let us look at the most elementary potential, namely the infinite square well, and let us
determine its SUSY partner potential.

Consider a particle of mass m in an infinite square well potential of width L:

V (x) =

{
0 x ∈ [0, L]
+∞ x ∈ R \ [0, L] .

The normalized ground state wave function is known to be (see [3], p.76)

ψ
(1)
0 (x) =

√
2
L

sin
πx

L
, x ∈ [0, L] ,

and the ground state energy is

E0 =
~2π2

2mL2
.

Subtracting off the ground state energy so that the Hamiltonian can be factorized, we have
for H1 := H − E0 that the energy eigenvalues are

E(1)
n = En − E0 =

(n + 1)2π2~2

2mL2
− π2~2

2mL2
=

n(n + 2)π2~2

2mL2
, n = 0, 1, ... .

Since H and H1 have the same eigenfunctions we can write down the normalized eigenfunc-
tions of H1:

ψ(1)
n =

√
2
L

sin
(n + 1)πx

L
, x ∈ [0, L] , n ≥ 0 .

The superpotential for this problem is readily obtained using (3.4) as

W (x) = − ~√
2m

(√
2
L sin πx

L

)′
√

2
L sin πx

L

= − ~√
2m

π

L
cot

πx

L

and hence the supersymmetric partner potential V2 is (substituting W (x) into (3.5))

V2(x) = W 2(x) +
~√
2m

W ′(x) =
~2π2

2mL2

(
cos2 πx

L

sin2 πx
L

+
1

sin2 πx
L

)
=
~2π2

2mL2

(
2

sin2 πx
L

− 1

)
.

Figure 3.2 shows V1(x), V2(x), W (x) and ψ
(1)
0 (x) of our supersymmetric problem.

The wave functions for H2 are obtained by applying the operator A = ~√
2m

d
dx + W (x) to

the wave functions of H1. In particular we find that the normalized ground and first excited
state wave functions of H2 are

ψ
(2)
0 =

Aψ
(1)
1√

E
(1)
1

=
1√

3π2~2
2mL2

√
2
L

(
~√
2m

d

dx
− ~√

2m

π

L
cot

πx

L

)
sin

2πx

L
= −2

√
2

3L
sin2 πx

L
,

ψ
(2)
1 =

Aψ
(1)
2√

E
(1)
2

=
1√

8π2~2
2mL2

√
2
L

(
~√
2m

d

dx
− ~√

2m

π

L
cot

πx

L

)
sin

3πx

L
= − 2√

L
sin

πx

L
sin

2πx

L
.

The other eigenfunctions of H2 can be obtained analogously.
Thus I have shown using SUSY that two rather different potentials corresponding to H1

and H2 have exactly the same spectra except for the fact that H2 has one fewer bound state.
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x

x

V x1( ) = -1

V x x2( ) = 2 sin ( ) - 1
-2

W x x( ) = -cot( )

ø0

(1)
( ) = (2/ sin( )x xð)

1/2

Figure 3.2: On the left the infinite square well potential V1(x) = −1 and its partner potential
V2(x) = 2

sin2 x
− 1. For convenience we put the well width L = π and ~ = 2m = 1. On the

right the ground state eigenfunction of H1 ψ
(1)
0 (x) and the superpotential for our problem

W (x).

3.1.3 SUSY Algebra

The energy matching of H1 and H2 has a deeper algebraic reason. Let us construct a SUSY
matrix Hamiltonian of the form

H =

(
H1 0
0 H2

)
,

which contains both H1 and H2, and consider operators (so called supercharges)

Q =

(
0 0
A 0

)
, Q† =

(
0 A†

0 0

)
.

It is an easy observation that Q and Q† in conjunction with H form a closed graded algebra
which contains both bosonic (H) and fermionic (Q,Q†) operators with commutation and
anti-commutation relations:

[H, Q] =

(
H1 0
0 H2

)(
0 0
A 0

)
−

(
0 0
A 0

)(
H1 0
0 H2

)
=

(
0 0

H2A−AH1 0

)
= 0 ,

(3.11)

[H, Q†] = −[H, Q]† = 0 , (3.12)

{Q,Q†} =

(
0 0
A 0

)(
0 A†

0 0

)
+

(
0 A†

0 0

)(
0 0
A 0

)
=

(
A†A 0

0 AA†

)
= H , (3.13)
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{Q,Q} = 2Q2 = 0 , (3.14)

{Q†, Q†} = 2Q†2 = 0 . (3.15)

The graded algebra (3.11) - (3.15) was directly motivated by the supersymmetric algebra in
QFT. (See, e.g. [5].)

Suppose now that Ψ is an eigenfunction of H corresponding to an eigenvalue E, i.e.
HΨ = EΨ. From the commutation relations (3.11), (3.12) it follows that

QHΨ = H(QΨ) = E(QΨ) , (3.16)

Q†HΨ = H(Q†Ψ) = E(Q†Ψ) .

If we now take Ψ in the form

Ψ =

(
ψ(1)

0

)
,

where H1ψ
(1) = Eψ(1), then

HΨ =

(
H1 0
0 H2

)(
ψ(1)

0

)
=

(
H1ψ

(1)

0

)
=

(
Eψ(1)

0

)
= EΨ .

Hence

QΨ =

(
0 0
A 0

)(
ψ(1)

0

)
=

(
0

Aψ(1)

)

must satisfy (3.16) which now reads
(

H1 0
0 H2

)(
0

Aψ(1)

)
=

(
0

H2(Aψ(1))

)
=

(
0

E(Aψ(1))

)
. (3.17)

Analogously we can obtain
(

H1(A†ψ(2))
0

)
=

(
Ẽ(A†ψ(2))

0

)
, (3.18)

where H2ψ
(2) = Ẽψ(2). Notice that (3.17) and (3.18) are in fact the equalities (3.6) and (3.7)

from section 3.1.1 which enabled us to relate the eigenstates of H1 and H2.

3.1.4 Relation of the Reflection and Transmission Coefficients of SUSY

Partners

Another important consequence of SUSY QM is that it allows to relate the reflection and
transmission coefficients in situations when the two partner potentials have continuous spec-
tra.
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At the beginning of section 3.1 I introduced supersymmetry of two potentials using the
ground state wave function ψ

(1)
0 of H1. In fact we don’t need any bound state wave function

to construct the SUSY partner Hamiltonian H2 and obtain relation between H1 and H2. We
may just use (3.2) – the definition of A and A† – and for a given H1 = A†A define H2 := AA†

with W (x) being some solution of the Riccati equation (3.3).
In order for scattering to take place in both of the partner potentials, it is necessary that

V1,2 are finite as x → −∞ or as x → +∞ or both. If V1,2 is unbounded both for x → ±∞, then
we do not have free particle, because the wave function disappears at x → ±∞ exponentially.
Transmission and reflection coefficients are only defined for particles which have well defined
plane wave properties at x → −∞ or x → +∞ (or both).

Let us presume that there exist finite limits limx→±∞W (x), limx→±∞W ′(x) and let us
define

W± := W (x → ±∞) .

Then W ′(x → ±∞) must be zero and it follows from (3.3) and (3.5) that

V1(x → ±∞) = V2(x → ±∞) = W 2(x → ±∞) .

See Figure 3.3 in section 3.1.5 for example.
Let us consider, for definiteness, an incident plane wave eik−x of energy E coming from

−∞. As a result of scattering from the potentials V1,2(x) one would obtain transmitted waves
T1,2(k−)eik+x and reflected waves R1,2(k−)e−ik−x. The boundary conditions are

ψ
(1,2)
E (x → −∞) = eik−x + R1,2(k−)e−ik−x , (3.19)

ψ
(1,2)
E (x → +∞) = T1,2(k−)eik+x , (3.20)

where k− and k+ are given by

k± =

√
2m(E −W 2±)

~
.

SUSY connects continuum wave functions of H1 and H2 having the same energy analo-
gously to what happens in the discrete spectrum – if ψ

(1)
E satisfies H1ψ

(1)
E = Eψ

(1)
E , then

H2(Aψ
(1)
E ) = AH1ψ

(1)
E = E(Aψ

(1)
E ) ⇒ ψ

(2)
E = NAψ

(1)
E ,

where N is a normalization constant. Using the definition of the operator A (3.2) and ex-
pressions (3.19), (3.20) for ψ

(1)
E we find that in the asymptotic region x → −∞

ψ
(2)
E (x → −∞) = NAψ

(1)
E (x → −∞) = N

(
~√
2m

d

dx
+ W−

)(
eik−x + R1(k−)e−ik−x

)

= N

(
i~k−√

2m
+ W−

)
eik−x + N

(−i~k−√
2m

+ W−

)
R1(k−)e−ik−x .
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Equating the latter with (3.19) (terms with the same exponent) gives us

N

(
i~k−√

2m
+ W−

)
= 1 , N

(−i~k−√
2m

+ W−

)
R1(k−) = R2(k−) . (3.21)

Let us do the same thing at +∞ :

ψ
(2)
E (x → +∞) = NAψ

(1)
E (x → +∞) = N(

~√
2m

d

dx
+ W+)T1(k−)eik+x

= N(
i~k+√

2m
+ W+)T1(k−)eik+x .

Hence
N(

i~k+√
2m

+ W+)T1(k−) = T2(k−) . (3.22)

Finally, let us take together relations (3.21) and (3.22) and find

R1(k−) =
i~k−√

2m
+ W−

−i~k−√
2m

+ W−
R2(k−) , T1(k−) =

i~k−√
2m

+ W−
i~k+√

2m
+ W+

T2(k−) . (3.23)

It is now an easy consequence that the reflection and transmission probabilities of two
partner potentials are identical, i.e.

|R1|2 = |R2|2 and |T1|2 = |T2|2 .5 (3.24)

3.1.5 Example: A Reflectionless Potential

Clearly, a constant potential V1(x) ≡ C (i.e. a free particle) is reflectionless (|R1| = 0). It
follows from (3.24) that its SUSY partner potential is also reflectionless. Let’s find some
nontrivial partner potential to the free particle potential.

Let’s first take the equation (3.3), which reads

V1(x) ≡ C = W 2(x)− ~√
2m

W ′(x) , (3.25)

and solve it using the anzatz W (x) = − ~√
2m

u′(x)
u(x) . We get a second order linear differential

equation for new unknown function u(x)

2mC

~2
u(x) = u′′(x)

with general solution

u(x) = D1 exp

(√
2mC

~
x

)
+ D2 exp

(
−
√

2mC

~
x

)
, D1, D2 ∈ R .

5Recall that k± =

√
2m(E−W2

±)

~ . Thus
~2k2

+
2m

+ W 2
+ =

~2k2
−

2m
+ W 2

− = E .
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The partner potential is given by (3.5), i.e. (considering (3.25)) as

V2(x) = W 2(x) +
~√
2m

W ′(x) = 2W 2(x)− C = 2
~2

2m

u′2(x)
u2(x)

− C .

For the simplicity sake I choose D1 = D2 = 1
2 and suppose that C > 0. Then u(x) =

cosh
√

2mC
~ x and we get

V2(x) = 2
~2

2m

2mC

~2

sinh2
√

2mC
~ x

cosh2
√

2mC
~ x

− C = 2C

(
1− 1

cosh2
√

2mC
~ x

)
− C = C − 2C

cosh2
√

2mC
~ x

.

We have obtained a nontrivial reflectionless potential or one may say we have proven reflec-
tionlessness of the potential V2(x) = C − 2C cosh−2

√
2mC
~ x. The functions V1(x), V2(x) and

W (x) are plotted in the Figure 3.3.

x

V x1( ) = 4

V x x2( ) = 4 - 8 cosh (2 )
-2

V x x2( ) = 4 - 8 cosh (2 )
-2

W x x( ) = -2 tanh(2 )

Figure 3.3: The free particle potential V1(x), its superpartner potential V2(x) and the super-
potential W (x) plotted for C = 4, ~ = 2m = 1. Since V1 is clearly reflectionless, V2 is also a
reflectionless potential.

3.2 Broken Supersymmetry

A symmetry of the Hamiltonian (or Lagrangian) is told to be spontaneously broken if the
lowest energy solution does not respect that symmetry. Consider, for example, ferromagnet,
where the Hamiltonian has rotational symmetry, but we know that at T → 0 it picks up
magnetization in one direction.

Another example from everyday life may be a straw. If you stress a straw, it bends. Even
though your description prefers no direction, it must bend somewhere, so it spontaneously
picks up one direction and bends. By choosing one of true vacua the system spontaneously
violates its rotational symmetry (see Fig.3.4).
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x

V

false

vacuum

true vacua

Figure 3.4: A stressed straw spontaneously brakes rotational symmetry choosing one of the
true vacua (the lowest energy states).

So far we have seen that when the ground state wave function of H1 is known, then we can
factorize the Hamiltonian and find the SUSY partner Hamiltonian H2. Now let us consider
the converse problem. Suppose we are given a superpotential W (x) and construct the matrix
Hamiltonian H (as we did in section 3.1.3). There are two candidates for the zero energy
ground state wave function of H:

(
ψ

(1)
0

0

)
and

(
0

ψ
(2)
0

)
,

where ψ
(1)
0 and ψ

(2)
0 are the zero energy ground states of H1 and H2, respectively, and can be

obtained from:6

Aψ
(1)
0 (x) = 0 ⇒ ψ

(1)
0 (x) = C1 exp (−

√
2m

~

∫ x

a
W (y)dy) ,

A†ψ(2)
0 (x) = 0 ⇒ ψ

(2)
0 (x) = C2 exp (

√
2m

~

∫ x

a
W (y)dy) .

Because ψ
(1)
0 ψ

(2)
0 = C1C2 6= 0, ψ

(1)
0 and ψ

(2)
0 cannot both vanish at ±∞ and therefore cannot

be both square integrable at the same time. By convention, we shall always choose W in such
a way that amongst H1, H2 only H1 (if at all) will have a normalizable zero energy ground
state eigenfunction. This is ensured by choosing W such that W (x) is positive (negative) for
large positive (negative) x.

6If H1ψ
(1)
0 = 0, then

0 = 〈ψ(1)
0 |H1|ψ(1)

0 〉 = 〈ψ(1)
0 |A†A|ψ(1)

0 〉 = ‖Aψ
(1)
0 ‖2

implies Aψ
(1)
0 = 0. Analogously for ψ

(2)
0 .
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Let us denote the ground state of H by a two component vector |0〉. Supersymmetry in
QM is said to be an unbroken symmetry (or exact SUSY) if

Q|0〉 = Q†|0〉 = 0 , (3.26)

where Q and Q† have been defined in section 3.1.3. It follows from (3.13) that in this case
H|0〉 = 0. Thus |0〉 can be written as

|0〉 =

(
ψ

(1)
0

0

)
.

In all the cases we have encountered so far the SUSY was indeed unbroken.
If neither ψ

(1)
0 nor ψ

(2)
0 is normalizable then H does not have a zero energy eigenstate

and SUSY is (spontaneously) broken.7 Denote ϕ
(1)
0 the ground state of H1, i.e. H1ϕ

(1)
0 =

E
(1)
0 ϕ

(1)
0 6= 0. The operator A (defined by (3.2)) no longer annihilates ϕ

(1)
0 . Thus (3.6) shows

that Aϕ
(1)
0 6= 0 is an eigenstate of H2 corresponding to the eigenvalue E

(1)
0 , which is in turn

the ground state energy of H2. The relations between the eigenstates of H1 and H2 that one
now obtains are (n = 0, 1, ...):

E(2)
n = E(1)

n > 0 ,

ϕ(1)
n =

1√
E

(2)
n

A†ϕ(2)
n ,

ϕ(2)
n =

1√
E

(1)
n

Aϕ(1)
n .

The situation is sketched in the Figure 3.5.
Consider, for example, superpotentials of the form

W (x) = gxn , g > 0 , n ∈ N .

Then for n odd one always has a normalizable ground state wave function (SUSY is unbroken).
However for the case of n even, there is no candidate matrix ground state wave function that
is normalizable (SUSY is broken).

The breaking of SUSY can be described by a topological quantum number called the
Witten index (see [1], p.26).

3.3 Shape Invariance and Solvable Potentials

In 1983, the concept of a shape invariant potential (SIP) within the structure of SUSY QM
was introduced by Gendenshtein. The definition presented was as follows: a potential is said
to be shape invariant if its SUSY partner potential has the same spatial dependence as the

7Since H|0〉 6= 0, where |0〉 is the ground state of H, the condition of unbroken SUSY (3.26) does not hold.
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H1 H2

E0

(1)

E = 0

E1

(1)

E0

(2)

E1

(2)

.

.
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.

.

.

.

ö0

(1)

ö0

(2)

ö1

(2)
ö1

(1)

A
†

A

Figure 3.5: Energy levels of two SUSY partner Hamiltonians H1 and H2 in the case of broken
SUSY. All the energy levels are degenerate. The action of the operators A and A† is displayed
and the number of nodes of the eigenfunctions of H1 and H2 is indicated. To be compared
with Figure 3.1 which represents the case of unbroken SUSY.

original potential with possibly altered parameters. It was readily shown that for any SIP,
the energy eigenvalue spectrum can be obtained algebraically. Much later, a list of SIPs was
given and it was shown that the energy eigenfunctions as well as the scattering matrix could
also be obtained algebraically for these potentials.

3.3.1 The Shape Invariance Condition

I start this section with one rather innocent example.

− ~
2

2m

d2

dx2
+

1
2
mωx2 (3.27)

is the harmonic oscillator Hamiltonian. It’s ground state eigenvalue and (unnormalized)
ground state eigenfunction are known to be ([3], p.80) E0 = ~ω

2 and ψ0(x) = exp(−mω
2~ x2).

To get the SUSY QM involved we need the ground state energy to be zero. Thus we define
the shifted harmonic oscillator potential

V1(x) =
1
2
mωx2 − ~ω

2
.

The eigenfunctions of the Hamiltonian H1 = − ~2
2m

d2

dx2 + V1(x) are the same as those of the
original harmonic oscillator (3.27) and its spectrum is only shifted by the constant ~ω2 .

Now, let us find the SUSY potential V2(x). We make use of (3.4)8 to obtain the superpo-
tential

W (x) = − ~√
2m

ψ′0(x)
ψ0(x)

=
√

m

2
ωx .

8Notice that in these relations it makes no difference whether ψ0 is multiplied by a constant. That’s why

we don’t require ψ0 to be normalized.
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Hence from (3.5)

V2(x) = W 2(x) +
~√
2m

W ′(x) =
mω2

2
x2 +

~ω
2

= V1(x) + ~ω . (3.28)

One can see that V2(x) compare to V1(x) is only shifted by a constant while its ”shape” (its
x-dependence) remains the same. This may inspire us to make a generalization and find a
new quantum mechanical concept – the shape invariance of potentials.

The two SUSY partner potentials V1(x) and V2(x) are said to be shape invariant if they
satisfy the condition

V2(x; a1) = V1(x; a2) + R(a1) , (3.29)

where a1 is a set of parameters, a2 is a function of a1 (say a2 = f(a1)) and the remainder
R(a1) is independent of x.

Consider, for example, the superpotential W (x) = n tanhx, where n ∈ N. Put ~ = 2m = 1
for simplicity. The two SUSY partner potentials are

V1(x; n) = W 2(x)−W ′(x) = n2 − n(n + 1)
cosh2 x

,

V2(x; n) = W 2(x) + W ′(x) = n2 − (n− 1)n
cosh2 x

.

Obviously
V2(x; n) = V1(x; n− 1) + n2 − (n− 1)2 ,

i.e. V1 and V2 are shape invariant.
The harmonic oscillator is known to be algebraically solvable by the method of raising

and lowering operators.9 In fact, we shall see right away that if the SUSY is unbroken then
arbitrary shape invariant potential (SIP) can be solved (i.e. we can obtain its eigenvalues and
eigenfunctions) algebraically.

3.3.2 General Formulas for Bound State Spectrum and Wave Functions of

SIPs

Let us start from the SUSY partner Hamiltonians H1 and H2 whose eigenvalues and eigen-
functions are related by SUSY which is supposed to be unbroken.

Suppose the potential V1(x) depends on a set of parameters a1, i.e.

H1 = − ~
2

2m

d2

dx2
+ V1(x; a1) .

In view of the shape invariance condition (3.29), its superpartner H2 reads

H2 = − ~
2

2m

d2

dx2
+ V2(x; a1) = − ~

2

2m

d2

dx2
+ V1(x; a2) + R(a1) .

9See [3], p.79. Notice that our SUSY operators A and A† (defined by (3.2)) are nothing else but the lowering

(or annihilation) and raising (or creation) operators for the harmonic oscillator.
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One can introduce another supersymmetry starting from the shifted Hamiltonian H2−R(a1) =
− ~2

2m
d2

dx2 + V1(x; a2), whose ground state energy is zero due to the assumption of unbroken
SUSY for the potential V1(x; a2). The superpartner of H2 −R(a1) is

H3 −R(a1) = − ~
2

2m

d2

dx2
+ V2(x; a2) = − ~

2

2m

d2

dx2
+ V1(x; a3) + R(a2) .

One can continue in this manner to construct a series of Hamiltonians Hs, s = 1, 2, 3, .... In
each step we suppose that SUSY is unbroken. The series stops when the bound states are
exhausted. See Figure 3.6.

V a1 1( ) V a1 2( ) + R a( )1 V a1 3( ) + R a R a( ) + ( )1 2

E0

(1)
ø0

(1)
R a( 1)

R a( 2)

E1

(1)
ø1

(1)
E0

(2)
ø0

(2)

E1

(2)
ø1

(2)
E2

(1)
ø2

(1)

.

.

.

.

.

.

.

.

.

.
.

.

A a
†
( )1 A a

†
( )2

{
{

E0 0

(3) (3)
ø

E = 0

Figure 3.6: A series of SUSY partner potentials connected by the shape invariance condition
(3.29). SUSY is supposed to be unbroken in each step.

Generally, for

Hs = − ~
2

2m

d2

dx2
+ V1(x; as) +

s−1∑

k=1

R(ak)

we have the superpartner

Hs+1 = − ~
2

2m

d2

dx2
+ V2(x; as) +

s−1∑

k=1

R(ak) = − ~
2

2m

d2

dx2
+ V1(x; as+1) +

s∑

k=1

R(ak) ,

where as = f s−1(a1), i.e. the function f applied s− 1 times.
It is obvious from the construction (and from the Fig. 3.6) that the n’th energy level of

H1 is coincident with the ground state of the Hamiltonian Hn. Hence the complete eigenvalue
spectrum of H1 is given by

E(1)
n (a1) =

s∑

k=1

R(ak) , E
(1)
0 = 0 .

One can use (3.28), which is in fact the shape invariance condition for the harmonic oscillator
potential, to easily check that this result is in agreement with the expression for the eigenvalues
of a (shifted) harmonic oscillator.
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We have seen in the section 3.1.1 that the eigenfunctions of two superpartner Hamiltonians
are related by (3.9), i.e.

ψ(1)
n (x; a1) ∝ A†(a1)ψ

(2)
n−1(x; a1) .

The shape invariance condition (3.29) shows that the potentials V2(x; a1) and V1(x; a2) have
the same eigenfunctions – ψ

(2)
n−1(x; a1) = ψ

(1)
n−1(x; a2). Thus

ψ(1)
n (x; a1) ∝ A†(a1)ψ

(1)
n−1(x; a2) .

The n’th state unnormalized eigenfunction ψ
(1)
n (x; a1) for the original Hamiltonian H1(x; a1)

is therefore given by

ψ(1)
n (x; a1) ∝ A†(a1)A†(a2)...A†(an)ψ(1)

0 (x; an+1) .

3.3.3 Finding the Shape Invariant Potentials

Now the point is to classify solutions to the shape invariance condition (3.29). Once such a
classification is available, then one discovers new SIPs which are solvable by purely algebraic
methods. Although the general problem is still unsolved, two classes of solutions have been
found.

In the first class, the parameters a1 and a2 are related to each other by translation (a2 =
a1 +α). Remarkably enough, all well known analytically solvable potentials discussed in most
textbooks on nonrelativistic quantum mechanics (such as Coulomb, Eckart, Rosen-Morse,
Pösch-Teller and other potentials) belong to this class.

In the second class, the parameters a1 and a2 are related to each other by scaling (a2 = qa1)
and the potentials are only obtained in a series form.

I want to emphasize that the shape invariance is only a sufficient condition for exact
solvability, not a necessary condition. There are potentials which have been exactly solved
although they are not shape invariant.

One can find more information about shape invariance, including the table of shape in-
variant potentials, in [1], p.38.

3.4 SUSY Variational Method for Calculating Energy Spec-

trum and Wave Functions of the Anharmonic Oscillator

The framework of SUSY QM has been very useful in generating several new perturbative
methods for calculating the energy spectra and wave functions for one dimensional potentials.
They are discussed in more detail in [1]. In this section I briefly show the SUSY-inspired
variational method.

Consider, for example, the anharmonic oscillator potential V (x) = gx4 which is not an
exactly solvable problem in QM. Let us look for the (normalized) approximate ground state
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wave function in the form

ψ0(x; β) :=
(

2β

π

)1/4

e−βx2
, (3.30)

where β is the variational parameter.
Minimizing the expression

〈ψ0(β) | H | ψ0(β)〉 =
〈

ψ0(β) | − ~
2

2m

d2

dx2
+ gx4 | ψ0(β)

〉
=

β~
2m

+
3g

16β2

with respect to the parameter β yields

β0 =
(

3
4

mg

~

)1/3

,

and the approximate ground state energy

E0 = 〈ψ0(β0) | H | ψ0(β0)〉 =
(

3
4

)4/3 (
~
m

)2/3

g1/3 .= 0.68142
(
~
m

)2/3

g1/3.

This is rather good for this crude approximation since the exact ground state energy of the
anharmonic oscillator determined numerically is E0 = 0.66799

( ~
m

)2/3
g1/3.

The approximate superpotential W resulting from this variational calculation is (in view
of (3.4))

W (x) = − ~√
2m

1
ψ0(x; β0)

dψ0(x;β0)
dx

=
2~√
2m

β0x , (3.31)

which leads, within this approximation, to the potential

V1(x) = W 2(x)− ~√
2m

W ′(x) =
2~2

m
β2

0x2 − ~
2

m
β0 .

The (approximate) SUSY partner potential is now

V2(x) = W 2(x) +
~√
2m

W ′(x) =
2~2

m
β2

0x2 +
~2

m
β0 .

Since V2 differs from V1 by a constant 2~2
m β0, the approximate ground state wave function for

V2 is also given by (3.30) with β = β0. The approximate ground state energy of V2,10 is now

〈ψ0(β0) | H2 | ψ0(β0)〉 = 〈ψ0(β0) | H1 | ψ0(β0)〉+
2~2

m
β0 .

Thus we find in this harmonic approximation that the energy difference between the ground
state and the first excited state of the anharmonic oscillator is

2~2

m
β0 = 2

(
3
4

)1/3 ~2

m

(mg

~

)1/3 .= 1.817
~2

m

(mg

~

)1/3

10which is, thanks to supersymmetry, also the first excited state energy of V1,
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which is to be compared with the exact numerical value of 0.863~
2

m

(mg
~

)1/3. This shows
that the harmonic approximation breaks down rapidly when we consider the higher energy
eigenstates of the anharmonic oscillator.

The approximate (unnormalized) first excited state wave function in this simple approxi-
mation is (see Figure 3.1)

ψ
(1)
1 = A†ψ(2)

0 = A†ψ(1)
0 =

(
− ~√

2m

d

dx
+ W (x)

)
ψ0(x; β0)

and substituting from (3.30) and (3.31) gives

ψ
(1)
1 (x) =

(
− ~√

2m

d

dx
+

2~√
2m

β0x

)(
2β0

π

)1/4

e−β0x2
=

~√
2m

(
2β0

π

)1/4

4β0xe−β0x2
.

To obtain better accuracy it is necessary to extend the number of variational parameters.
Calculation using more variational parameters (polynomials times exponentials) gave energy
eigenvalues for low lying states accurate to 0.1%.
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Chapter 4

Berry Phase

A type of evolution of a physical system which is often of interest in physics is one in which
the state of the system returns to its original state after an evolution. We shall call this a
cyclic evolution. Now, in quantum mechanics, the initial- and final-state vectors of a cyclic
evolution are related by a phase factor eiϕB (so called Berry phase), which can have observable
consequences.

The Berry phase was firstly published by M.V.Berry in 1984 in the context of adiabatic
evolution of a cyclic quantum system. B.Simon explained mathematically the Berry phase as
an anholonomy1 in the parameter space. Later on, Y.Aharonov and J.Anandan showed that
if the evolution is cyclic in the projective Hilbert space then the anholonomy is not based on
the assumption of adiabaticity.

Many further generalizations showed that the Berry phase is a pure artefact of the geom-
etry of the projective Hilbert space and hence it is independent of the actual Hamiltonian
(as long as the curve in the projective Hilbert space is the same) and is even independent of
whether or not the evolution is cyclic (Pancharatnam’s phase).

I aim to present the Berry phase concept without going deeper into geometry of projective
Hilbert spaces.

4.1 Phase Change during a Cyclic Quantum Evolution

Let us have a Hilbert space H of normalized quantum states |ψ〉. Let us introduce an equiv-
alence relation ∼ between two states |ψ1〉, |ψ2〉 ∈ H

|ψ1〉 ∼ |ψ2〉 ⇔ (∃c ∈ U(1))(|ψ1〉 = c|ψ2〉) .2

1Anholonomy is a geometrical phenomenon in which nontrivial topology of the configuration manifold

causes some variables to fail to return to their original values when others, which drive them, are altered round

a cycle. The simplest anholonomy is in the parallel transport of vectors – e.g. the change in the direction of

swing of a Foucault pendulum after one rotation of the earth.
2U(1) = {c ∈ C | |c| = 1}

29



That is, two states are ∼-equivalent if they only differ by a phase factor eiϕ. This equivalence
gives rise to the projective Hilbert space P = H/∼ which consists of equivalence classes

[|ψ〉] = {|ψ′〉 ∈ H | |ψ′〉 = c|ψ〉, c ∈ U(1)}

called rays. Finally, let Π be the projection map

Π : H → P , |ψ〉 7→ [|ψ〉] .

Suppose that the normalized state |ψ〉 evolves according to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 , (4.1)

such that, for some given T , |ψ(T )〉 = eiϕ|ψ(0)〉, where ϕ ∈ R. Then |ψ(t)〉 defines a curve
C : [0, T ] → H with its projection C̃ ≡ Π(C) being a closed curve in P (see Fig.4.1).

ö {

Figure 4.1: A cyclic evolution of a quantum system governed by the Hamiltonian H(t) traces
out a curve C. The phase of the wavefunction |ψ(t)〉 is changed by ϕ after one cycle. The
mapping Π projects the curve C onto the projective Hilbert space P (the space of rays)
creating a closed curve C̃.

Now define
|ψ̃(t)〉 := e−if(t)|ψ(t)〉 , f(T )− f(0) := ϕ .

Then |ψ̃(T )〉 = |ψ̃(0)〉 and hence {|ψ̃(t)〉 | t ∈ [0, T ]} represents the closed curve C̃. Inserting
|ψ(t)〉 = eif(t)|ψ̃(t)〉 into (4.1) we obtain

H(t)|ψ̃(t)〉 = i~(i
df

dt
|ψ̃(t)〉+

d

dt
|ψ̃(t)〉)
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and multiplying the equation by (normalized) 〈ψ̃(t)| yields

〈ψ(t)|H(t)|ψ(t)〉 = 〈ψ̃(t)|H(t)|ψ̃(t)〉 = −~df

dt
+ ~〈ψ̃(t)|i d

dt
|ψ̃(t)〉 .

Finally, let’s divide the whole equation by ~ and integrate from 0 to T :
∫ T

0

1
~
〈ψ(t)|H(t)|ψ(t)〉dt

︸ ︷︷ ︸
=: −ϕD

= − (f(T )− f(0))︸ ︷︷ ︸
= ϕ

+
∫ T

0
〈ψ̃(t)|i d

dt
|ψ̃(t)〉dt

︸ ︷︷ ︸
=: ϕB

.

I have split the total phase that the state |ψ(t)〉 acquires during cyclic evolution along the
curve C into two parts:

ϕ = ϕD + ϕB .

The dynamical part

ϕD = −
∫ T

0

1
~
〈ψ(t)|H(t)|ψ(t)〉dt

depends on the Hamiltonian H, whereas the geometric Berry phase

ϕB =
∫ T

0
〈ψ̃(t)|i d

dt
|ψ̃(t)〉dt (4.2)

does not. We should check that this definition of the Berry phase ϕB is correct, i.e. that it
does not depend on concrete representation of the curve C̃, which is a curve in the space of
rays P.

Really, if we take, say
| ˜̃ψ(t)〉 := eig(t)|ψ̃(t)〉 ,

where g(0) = g(T ), then
∫ T

0
〈 ˜̃ψ(t)|i d

dt
| ˜̃ψ(t)〉dt =

∫ T

0
〈eig(t)ψ̃(t)|i d

dt
|eig(t)ψ̃(t)〉dt =

=
∫ T

0
(− dg

dt
〈ψ̃(t)|ψ̃(t)〉︸ ︷︷ ︸

= 1

+〈ψ̃(t)|i d

dt
|ψ̃(t)〉)dt = − (g(T )− g(0))︸ ︷︷ ︸

= 0

+ϕB .

Now, clearly, the same |ψ̃(t)〉 can be chosen for every curve C′ for which Π(C′) = C̃ by
appropriate choice of f(t), for ϕB is independent of ϕ. Also, (4.2) can be rewritten as

ϕB =
∫ T

0
〈ψ̃(t)|i d

dt
|ψ̃(t)〉dt =

∫

C̃
B , (4.3)

where
B := i〈ψ̃|d|ψ̃〉 (4.4)

is so called Berry connection 1-form. Hence ϕB is a geometric property of the unparameterized
image of C̃ in P only. As a result of its geometric origin, ϕB is observable and measurable
(unlike the dynamical phase ϕD).
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4.2 Berry Phase in One Dimensional Quantum Mechanics

I remind that it has been discussed in the section 2 that in the case of 1-D Hamiltonian

H = − ~
2

2m

d2

dx2
+ V (x)

with the potential V (x) well defined on the whole real line, the spectrum is non-degenerate
and the eigenfunctions can be chosen to be real.

Suppose our Hamiltonian H is a function of a set of parameters Rj . Once we know an
eigenstate ψn(x,R) of H(R) corresponding to a (non-degenerate) eigenvalue En(R), we can
calculate the Berry phase which the eigenstate ψn(x,R) develops during adiabatic3 evolution
along a closed curve Γ in the parameter space.

From (4.3) and (4.4) the Berry phase is

ϕB =
∫

C̃
i〈ψn|d|ψn〉 =

∫

Γ
i
∑

j

〈ψn(R)| ∂

∂Rj
|ψn(R)〉dRj .

But if we investigate j-th scalar product in the integral, remembering that ψn(x,R) is real
valued, we find

〈ψn(R)| ∂

∂Rj
|ψn(R)〉 =

∫

R
ψn(x,R)

∂

∂Rj
ψn(x,R)dx =

∫

R

1
2

∂

∂Rj
(ψ2

n(x,R))dx =

=
1
2

∂

∂Rj

∫

R
ψ2

n(x,R)dx .4

Hence ϕB is an integral from an exact 1-form along a closed loop and therefore the Berry
phase is

ϕB = 0

and no anholonomy occurs.
It seems that if we want to observe some non-trivial geometric phase, we need to consider

more general class of potentials. In order to violate the assumptions about the shape of the
potential V (x) stated in the section 2, which led to the Berry phase equal to zero, let us
admit that the potential may have some singular point, say x = 0.

This singularity divides the real line R into two half-lines R+ and R−, where the time-
independent Schrödinger equation is to be solved separately. Once we know the eigenfunctions
|ψ(+)

n 〉 and |ψ(−)
n 〉 defined on R+ and R− respectively, the question is how to connect them at

the singular point to obtain an eigenfunction for the whole system. This connection can be
described by some boundary conditions at x = 0, depending eventually on a set of parameters.
These boundary conditions may be such that the functions |ψ(±)

n 〉 (corresponding to the same
3Adiabatic means that the change of parameters R is slow enough so that if the system starts as the n’th

eigenstate of H(R0) for some parameter configuration R0 ∈ Γ, it remains the n’th eigenstate of H(R) for all

R ∈ Γ.
4Of course, if it is legal to commute

∫
R and ∂

∂Rj .
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energy level) cannot be both real valued. Thus we can construct a closed loop in the parameter
space and calculate the Berry phase which may be possibly non-zero.

In [9], sec. 3.2 the Berry phase is calculated for a 1-D free particle in a box with removed
origin. The boundary conditions at the origin are discussed as well. They are, in fact, the
main topic of the article. The Berry phase indeed turns out to be non-zero.
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Chapter 5

Conclusion

We have got acquainted with the fundamental ideas of SUSY QM. We have seen how the
concept of SUSY partner Hamiltonians can be useful when one needs to calculate reflection
and transmission coefficients or eigenvalues and eigenfunctions of certain potentials, which
would otherwise be very difficult (or laborious) to solve. For more information I must once
again recommend the reference [1], where the shape invariance is discussed in much more
detail, where various perturbation methods are shown and where there are some applications
of SUSY QM that I didn’t even mention in this thesis (e.g. SUSY and the Dirac equation,
path integrals and SUSY etc.).

The last chapter was dedicated to the Berry phase. The aim of the further research is
to somehow relate the two topics – SUSY QM and the Berry phase. One may suspect that
there could be some relation between the Berry phases corresponding to the eigenfunctions of
two SUSY partner Hamiltonians which depend on some cyclically altered parameters. This
suspicion is, of course, motivated by the fact that the eigenfunctions of the SUSY partners
are related in the known way via the operators A and A† as discussed in the section 3.1.1.
However, to obtain some nontrivial results one will probably have to start to deal with more
general potentials (recall the arguments in section 4.2).
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