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Preface

These lecture notes serve as a reference for the course Quantum field theory 1 (02KTPA1)
taught at the Czech Technical University in Prague (Faculty of Nuclear Sciences and Physical
Engineering). They cover relativistic quantum mechanics (Part I) and basics of quantum field
theory (Part II). This course takes 13 weeks in a 4+2 weekly scheme, meaning 4× 50 minutes of
lectures plus 2× 50 minutes of exercises. Correspondingly, the lecture notes are divided into 13
chapters, with (solved) exercises provided at the end of each chapter.

I will be very grateful for reported errors or suggestions for improvement.
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Chapter 0

Overview of the course

0.1 Motivation and outline
Quantum field theory (QFT) is the latest step in the process of establishing fields, that is,
quantities defined throughout spacetime, as the fundamental entities that constitute physical
reality. Let us summarize this process.

1. It starts in Newtonian gravity, where one visualises gravitational field of a certain mas-
sive source as a collection of vectors, which force other matter to accelerate.

2. In electrodynamics, the electromagnetic field can exist even without sources, propagating
as a wave with universal velocity c. If charged particles are present, there is no direct non-
local action at a distance between them, but rather their interactions are mediated by the
field. (Particle A locally disturbs the field, the signal propagates for a finite amount of
time, and eventually hits particle B.)

3. The tension between Lorentz invariance of electromagnetic field equations and Galilean
invariance of the equations of Newtonian mechanics results in the invention of special
relativity. It asserts that the Lorentz transformations of the field theory should also
apply to matter. This indicates that there could be wave-like aspects of material particles.

4. Quantum mechanics provides a precise mathematical model of particles as blurred ‘wave-
packets of probability’, or quanta. However, it is inconsistent with special relativity, treating
time as an ordinary real parameter t while promoting spatial coordinates to operators X̂i.

5. Meanwhile it is realized that the classical electromagnetic field paradigm is not consistent
with black-body radiation experiments, and photoelectric effect. The conclusion is that the
energy of electromagnetic waves does not change smoothly, but rather jumps in steps ~ω
— the field is quantized, it is a collection of photons. (Quantized electromagnetic field
then also explains other phenomena like spontaneous emission of radiation from atoms.)

Quantum field theory puts forward a model, where all spacetime coordinates x and t are real
parameters, and the operator nature of quantum theory is carried by the field amplitudes φ̂(x, t).
This model applies to both matter and radiation, thereby closing the conceptual gap between the
two. Everything is fundamentally made of fields, although the field excitations, being quantized,
posses certain particle-like characteristics. As a bonus, it is easy to describe processes where

1



CHAPTER 0. OVERVIEW OF THE COURSE 2

numbers and types of particles change, such as electron–positron annihilation, e− + e+ → 2γ, or
β-decay, n→ p+ e− + ν̄e.

The unifying character of quantum field theory sounds attractive, yet by itself would not
make for a course within standard physics curriculum. The actual reason for endorsing quantum
field theory as the right description of Nature on its fundamental level is its ability to make
testable predictions that are being confirmed by countless particle physics experiments.

But it’s not only the Standard model of elementary particles and fundamental interactions
between them that makes use of the idea of quantized fields. QFT methods are of great value
also in condensed matter physics, which studies properties of solids and liquids, i.e., systems
of macroscopically many particles. The two disciplines have cross-fertilized each other with
ideas from condensed matter physics (e.g., renormalization, the Higgs mechanism) transferred to
particle physics, and vice versa (e.g., the concept of quasiparticles). The common QFT language
indeed substantially facilitates this communication.

The aim of this course is to provide a concise introduction into quantum field theory, keep-
ing in mind that there will be a follow-up advanced course (02KTPA2) that will present more
advanced techniques, and more modern topics (some of which will be briefly outlined — e.g.,
renormalization, Yang-Mills theories, field-theoretic Feynman path integral).

The field (or wave) equations that we will be dealing with can (and will be) used in different
physical contexts. For example, the Klein-Gordon equation (� + m2)φ = 0 can be used to
describe a spinless relativistic quantum particle, or a classical field (an oscillating membrane), or
a scalar quantum field. To minimize the possible confusion, these notes are strictly partitioned.
Part I (Chapters 1–4) explores single-particle relativistic quantum mechanics. Its main purpose
is to get familiar with the Dirac equation and Dirac spinors. Part II starts with Chapter 5 on
classical field theory. All quantities there are classical, no operators.

Actual quantum field theory is a subject of Chapters 6–13.2. To introduce the somewhat
abstract concept of quantum fields we first analyse a generic discrete system of coupled harmonic
oscillators, as it only takes elementary quantum mechanics to quantize their position degrees of
freedom, qi → q̂i. When the oscillators are arranged in a linear chain, the continuum limit results
in a string, whose classical configurations are described by a field φ(x), and upon quantization we
obtain a quantum field φ̂(x). Although in practice one usually starts directly from a continuum
theory with certain Lagrangian density, the picture of quantum field as a (potentially continuous)
collection of coupled oscillators provides a valuable visual intuition.

This picture is in fact perfectly fitting the quantized motion of atoms that form a crystal.
These atoms vibrate around their equilibrium lattice positions, and their collective excitations
(called phonons) are quantized in a similar way as the photons of electromagnetic field. Whether
spacetime itself has fundamentally a discrete lattice structure, i.e., forms a kind of ‘world-crystal’
whose vibrations give rise to elementary particles, is an open question.

0.2 Selected preliminaries from previous courses
Quantum field theory combines classical field theory, special relativity, and quantum mechanics,
and uses relatively advanced mathematical techniques. To narrow down a little let us point out
some concrete elements from these subjects that will be particularly useful (in order of appearance
during the course):

1. The formalism of special relativity (TEF2)

2. Pauli matrices and spin (KVAN1)
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3. Lagrangian and Hamiltonian formulation of classical mechanics (TEF1)

4. Action principle in classical field theory (TEF2)

5. Small vibrations and normal coordinates (VOAF)

6. Quantum harmonic oscillator, ladder operators (KVAN1)

7. Dirac delta function and Green’s functions of differential operators (RMF)

8. Heisenberg and Dirac picture of quantum mechanics (KVAN2)

0.3 Literature
This course (02KTPA1) was previously taught by doc. Petr Jizba whose lecture notes [1] contain
additional material on certain topics, and so can serve as a complementary reading.

There are many monographs on quantum field theory. These lecture notes mainly follow
the approach (as well as notational conventions) of Greiner and Reinhardt [2]. Other standard
sources to mention are Itzykson and Zuber [3], Peskin and Schroeder [4], and Weinberg [5]. A
very insightful book with short but very engaging chapters covering a great variety of topics is
from Zee [6]. For a more pedagogical introduction the lecture notes by Hořejší [7] or Tong [8]
are recommendable.

In any case, the reader should be warned that there are many conventional choices to make
when building quantum field theory, and the resulting set of conventions will typically differ from
one source to another.

0.4 Conventions
Let us summarize some conventions employed in these lecture notes. More will be said in Sec-
tion 1.1 on special relativity.

1. With exception of Chapters 1 and 6 we will work in the so-called ‘natural’ physical units,
i.e., set ~ = c = 1. Thus, for example, E = m(c2), E = (~)ω, x0 = (c)t, etc. (Length has
the same unit as time, and this in turn is inverse to the unit of mass and energy.)

2. We denote by δ(.) the Dirac delta function in any dimension, its dimensionality being
indicated by the argument, e.g., δ(x− y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3).

3. Einstein summation convention by default applies to various types of indices that we will
encounter: spatial indices i, j, . . ., spacetime indices µ, ν, . . ., internal field indices r, s, . . .,
spinor indices α, β, . . ., as well as to indices a, b, . . . enumerating the symmetry generators
(Lie algebra matrices).
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Chapter 1

Relativistic wave equations

1.1 Relativistic notation
By default, we will work with flat relativistic spacetime, i.e., a set of points (or rather coordinates
thereof)

x = (xµ) = (x0, x1, x2, x3) = (ct,x), (1.1)

where x = (xi) is the spatial part. It is customary to drop the parenthesis and write, e.g., xµ
instead of (xµ) for brevity. Greek (spacetime) indices µ, ν, ρ, σ, . . . run from 0 to 3, and Latin
(spatial) indices i, j, k, `, . . . from 1 to 3.

We will use the ‘mostly-negative’ convention for Minkowski metric,

g = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = diag(1,−1,−1,−1), (1.2)

common in particle physics. We denote by (gµν) = g−1 the inverse metric, i.e., gµνgνρ = δµρ ,
where the Kronecker symbol δµρ represents the identity matrix. In our case of flat spacetime
gµν = gµν . Application of the metric translates into raising or lowering of indices, e.g.,

xµ = gµνx
ν = (ct,−x). (1.3)

Four-momentum and the respective quantum operator read

pµ =

(
E

c
,p

)
, p̂µ = i~

∂

∂xµ
=

(
i~
c

∂

∂t
, i~∇

)
. (1.4)

Note that the operator ∇ is defined with lower index, ∇ = (∂1, ∂2, ∂3), where ∂i ≡ ∂
∂xi , and

p̂ = (p̂i) = −i~∇ is the spatial momentum operator of quantum mechanics. We also adopt the
standard notation

∆ ≡ ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
, � ≡ 1

c2
∂2

∂t2
−∆ = ∂µ∂µ (1.5)

for the Laplace, and d’Alambert operator, respectively.
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CHAPTER 1. RELATIVISTIC WAVE EQUATIONS 6

The Minkowski inner product of four-vectors a and b can be expressed in any of the following
equivalent ways:

a · b ≡ gµνa
µbν = gµνaµbν = aµbµ = aµb

µ = a0b
0 + a1b

1 + a2b
2 + a3b

3

= a0b0 − a · b = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − aibi. (1.6)

The Minkowski square is written as a2 ≡ aµaµ.
Lorentz transformations

x′
µ
= Lµνx

ν , or, in short, x′ = Lx, (1.7)

are linear transformations that preserve the Minkowski inner product:

a′ · b′ = a · b → gµνL
µ
ρL

ν
σ = gρσ. (1.8)

Simple matrix ‘gymnastics’ yields

L ρ
ν L

ν
σ = δρσ → (L−1)ρν = L ρ

ν . (1.9)

Taking L−1 instead of L in (1.8), and raising/lowering all indices we obtain

gµν(L
−1)µρ(L

−1)νσ = gρσ → gµνLρµL
σ
ν = gρσ. (1.10)

Standard Pauli matrices will have the index upstairs,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.11)

and we will often use the notation n · σ ≡ niσi. Pauli matrices satisfy the identity

σiσj =
1

2
{σi, σj}+ 1

2
[σi, σj ] = δij + i εijkσ

k, (1.12)

where [A,B] ≡ AB−BA is the commutator, and {A,B} ≡ AB+BA the anti-commutator of two
matrices (or operators). We will always write the ‘three-dimensional’ Levi-Civita permutation
symbol εijk (with ε123 = 1) with indices downstairs (same for the ‘three-dimensional’ Kronecker
δij), although the vertical position of indices on the two sides of an equation will not always
match. We also define the totally anti-symmetric ‘four-dimensional’ Levi-Civita symbol εµνρσ
(with ε0123 = 1), whose indices may be raised or lowered with the Minkowski metric.

1.2 Klein-Gordon equation
In quantum mechanics the Schrödinger equation

i~
∂ψ

∂t
=

(
− ~2

2m
∆+ V (x)

)
ψ(x, t) (1.13)

corresponds to quantisation of the non-relativistic energy relation

E =
p2

2m
+ V (x), (1.14)
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where energy and momentum are turned into quantum operators

Ê = i~
∂

∂t
, p̂ = −i~∇. (1.15)

In order to obtain a relativistic wave equation we start by considering free particles with the
relativistic energy-momentum relation

pµpµ =
E2

c2
− p2 = m2c2, (1.16)

where m is the particle’s rest mass, and promote it to a dispersion relation of the sought-for
wave equation. (The term ‘dispersion relation’ is known from wave mechanics as the dependence
between frequency ω and wave-vector’s magnitude |k|. In quantum mechanics, the energy of a
plane wave is related to the frequency by E = ~ω, and the momentum to the wave-vector by
p = ~k.) The group velocity of wave-packets (or ‘quantum particles’) is now given by

vg =
∂ω

∂|k| =
∂E

∂|p|
=

|p|
E
c2, (1.17)

which coincides with the velocity of relativistic particles, given by

v =
p

γm
=

p

E
c2. (1.18)

Note that in non-relativistic quantum mechanics we have the free-particle dispersion relation
E = p2

2m , which implies vg = |p|
m .

Inspired by the quantization rules of non-relativistic quantum mechanics we replace the four-
momentum pµ by an operator p̂µ = i~∂µ, and arrive at the Klein-Gordon equation for a free
(spinless) relativistic particle,

p̂µp̂µψ = m2c2ψ →
(
∂µ∂µ +

m2c2

~2

)
ψ(x) = 0, (1.19)

described by a complex-valued wave-function ψ(x). Here, the quantity ~
mc is the (reduced)

Compton wavelength of the particle. It can be shown (see Exercise 2) that in the non-relativistic
limit of dominant rest energy, E − mc2 � mc2, the Klein-Gordon equation reduces to the
Schrödinger equation for a free (spinless) particle.

In fact, the relativistic equation (1.19) was first considered by Schrödinger, who, however, got
discouraged after calculating energy levels of the hydrogen atom, which did not match experi-
mental results on the fine structure level. (Fine structure receives corrections due to relativity
as well as spin of the electron, and the latter is not captured by the ‘spinless’ relativistic equa-
tion (1.19).) Schrödinger therefore decided to put forward his non-relativistic equation, which
was able to explain the gross structure of the hydrogen energy spectrum, and the relativistic
equation was published soon after by Klein and Gordon (more about the history in [5, Ch. 1.1].)

It is worth to remark that were it not for the ‘mass term’ m2c2/~2 Eq. (1.19) would have
the form of an ordinary wave equation. With the mass term present it formally corresponds to
a wave equation for classical waves propagating in plasma [9, Ch. 6.4].

The Klein-Gordon equation is a linear differential equation with constant coefficients, and as
such admits solutions in the form of plane waves

ψp(x) = Ap exp

(
− i

~
p · x

)
, where pµpµ = m2c2, and p̂µψp = pµψp. (1.20)
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The dispersion relation can be cast as

E = ±c
√
m2c2 + p2, (1.21)

hence there exist solutions with both positive and negative values of energy, the negative ones
being related to the existence of antiparticles (as we shall see in Sec. 7.3). (Note that, unlike in
classical physics, in quantum physics the negative-energy part cannot be simply ignored since it
is possible for a quantum system to cross the finite energy gap from positive to negative energies,
much like an electron can jump between the energy levels of an atom.)

Next we look for a conserved current jµ corresponding to the Klein-Gordon equation. We
multiply Eq. (1.19) on the left by ψ∗, and subtract a complex-conjugate equation,

ψ∗
(
∂µ∂µ +

m2c2

~2

)
ψ − ψ

(
∂µ∂µ +

m2c2

~2

)
ψ∗ = 0. (1.22)

The mass terms cancel, and the rest can be cast as

∂µjµ = 0, where jµ ≡ i~
2m

(ψ∗∂µψ − ψ∂µψ
∗), (1.23)

and where the constant factor i~/2m has been added to match, in the non-relativistic limit, the
probability current of the Schrödinger equation (see Exercise 2). Eq. (1.23) has the form of a
continuity equation,

∂ρ

∂t
+ div j = 0, where ρ ≡ j0

c
=

i~
2mc2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
. (1.24)

It would be a natural guess to interpret ρ as the probability density. However, it is not hard
to realise that ρ can in fact be negative. Indeed, plugging, for example, the plane-wave solution
ψp we find

ρp = |Ap|2
E

mc2
, (1.25)

where E can be both positive or negative. A better interpretation is provided by multiplying ρ
by charge e, and regarding eρ as the charge density, which is allowed to be positive, negative or
zero.

1.3 First-order equations
The fact that the Klein-Gordon equation is of second order in time derivative means that it does
not determine the time evolution of a given initial configuration ψ(x, t0) unless we provide also
∂tψ(x, t0). This contrasts with the Schrödinger equation, which determines time evolution of
any given initial state. Therefore we look for a relativistic wave equation that would feature only
first-order time derivatives.

There are several ways in which one could attempt to resolve this issue. We list three
alternatives, where the last one leads to the celebrated Dirac equation, which is of great physical
importance.

1.3.1 Direct square root
One obvious way to proceed is to rewrite the classical relativistic energy-momentum relation
pµpµ = m2c2 in the form

H ≡ E =
√
m2c4 + p2c2, (1.26)
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and consider the Schrödinger equation

i~
∂ψ

∂t
= Ĥψ(x, t) with Hamiltonian Ĥ =

√
m2c4 − ~2c2∆. (1.27)

However, this equation treats space and time on different footing (this asymmetry is not what
we would expect of a relativistic theory). To make sense of the right-hand side, the square root
of the differential operator has to be interpreted as an infinite Taylor series (recall the formula
(1 + x)α = 1 + αx+ α(α− 1)x2 + . . .) of spatial derivatives acting on ψ(x, t).

1.3.2 Two coupled equations
The order of any differential equation can be lowered by introducing additional unknown func-
tions. In particular, the Klein-Gordon equation is equivalent to a Schrödinger-type equation (see
Exercise 3)

i~
∂

∂t
Ψ = ĤΨ, where Ĥ =

(
1 1
−1 −1

)
p̂2

2m
+

(
1 0
0 −1

)
mc2, (1.28)

and where Ψ is a two-component wave-function.

1.3.3 Dirac’s method
As we know from quantum mechanics, the square of any spatial vector can be represented as
(recall the identity (1.12))

(σipi)(σ
jpj) = δijpipj = pipi, (1.29)

where the identity matrix is implicit in the expressions. In 1928, Paul Dirac realised that,
similarly, in spacetime, for any four-vector it holds that

(γµpµ)(γ
νpν) = γµγνpµpν =

1

2
{γµ, γν}pµpν = gµνpµpν = pµpµ, (1.30)

provided that the objects γµ satisfy the relation

{γµ, γν} = 2gµν (∀µ, ν). (1.31)

With pµ replaced by the operators p̂µ = i~∂µ this allowed him to factorise (or, take a square-root
of) the Klein-Gordon differential operator,

p̂µp̂µ −m2c2 = (γµp̂µ +mc)(γν p̂ν −mc), (1.32)

and postulate the relativistic wave equation

(i~γµ∂µ −mc)Ψ(x) = 0, (1.33)

which implies the Klein-Gordon equation for Ψ(x).
What are the γµ’s? They can’t be just ordinary commuting numbers since then we couldn’t

have γµγν + γνγµ = 0 for µ 6= ν. It turns out that the relation (1.31) is satisfied by certain 4 by
4 matrices (the Dirac matrices), and hence the (Dirac) wave-function Ψ has four components.

The Dirac equation is arguably one of the most important equations of the 20th century
physics. We shall study it thoroughly in Chapters 3 and 4, where we will see that it describes
spin- 12 particles, and correctly predicts the fine structure spectrum of the hydrogen atom.
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1.4 Exercises
Exercise 1. Lorentz invariance of Klein-Gordon equation. Show that the Klein-Gordon equation
(with ~ = c = 1)

(∂µ∂µ +m2)ψ(x) = 0 (1.34)

is invariant under Lorentz transformations x′µ = Lµνx
ν .

Solution:

We assume that the wave-function ψ transforms as a scalar field under Lorentz transforma-
tions:

ψ′(x′) = ψ(x), hence ∂ψ′(x′)

∂x′µ
=

∂xρ

∂x′µ
∂ψ(x)

∂xρ
= (L−1)ρµ∂ρψ(x). (1.35)

Denoting ∂′µ ≡ ∂
∂x′µ , we find

(gµν∂′µ∂
′
ν+m

2)ψ′(x′) =
(
gµν(L−1)ρµ(L

−1)σν∂ρ∂σ+m
2
)
ψ(x) = (gρσ∂ρ∂σ+m

2)ψ(x) = 0, (1.36)

where we have used the defining property of the Lorentz transformations, Eq. (1.10).

Exercise 2. Non-relativistic limit of Klein-Gordon equation. Plug the ansatz

ψ(x, t) = ϕ(x, t) exp

(
− i

~
mc2t

)
(1.37)

into the Klein-Gordon equation (1.19), and show that it reduces to the Schrödinger equation
in the regime when ϕ oscillates much more slowly in time than the exponential factor, i.e.,
i~∂tϕ� mc2ϕ.

What does the Klein-Gordon current (1.23) reduce to in this approximation?

Solution:

We calculate

∂tψ(x, t) = e−
i
~mc

2t
(
∂t −

i

~
mc2

)
ϕ(x, t),

∂2t ψ(x, t) = e−
i
~mc

2t
(
∂2t − 2

i

~
mc2∂t −

m2c4

~2
)
ϕ(x, t). (1.38)

Non-relativistic approximation consist in neglecting the ∂2t term, since the time variation of ϕ is
much slower than the rest energy contributions. The Klein-Gordon equation thus reads

1

c2
∂2t ψ −∆ψ +

m2c2

~2
ψ ≈ e−

i
~mc

2t

[(
− 2

i

~
m∂t −

m2c2

~2
)
ϕ−∆ϕ+

m2c2

~2
ϕ

]
= 0, (1.39)

which can be rearranged to display the free-particle Schrödinger equation

i~∂tϕ = − ~2

2m
∆ϕ. (1.40)

Regarding the Klein-Gordon four-current, we have

ρ =
i~

2mc2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
=

i~
2mc2

[
ϕ∗
(
∂t −

i

~
mc2

)
ϕ− ϕ

(
∂t +

i

~
mc2

)
ϕ∗
]
≈ ϕ∗ϕ, (1.41)
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where we have neglected ∂t against i
~mc

2, and

ji =
i~
2m

(
ψ∗∂iψ − ψ ∂iψ∗) = i~

2m

(
− ϕ∗∂iϕ+ ϕ∂iϕ

∗) → j =
i~
2m

(
ϕ∇ϕ∗ − ϕ∗∇ϕ

)
, (1.42)

recovering the non-relativistic probability density and current, respectively.

Exercise 3. Feshbach-Villars representation of Klein-Gordon equation. Rewrite the Klein-
Gordon equation in a Schrödinger-like form — as an equation of first order in ∂t for a two-
component wave-function.

Solution:

Let us put ~ = c = 1. Introducing a function ξ = i
m∂tψ, the Klein-Gordon equation

(∂2t −∆+m2)ψ = 0 can be rewritten as a pair of equations

i∂tψ = mξ

i∂tξ = − 1

m
∆ψ +mψ. (1.43)

Their addition and subtraction yield, respectively, (denoting ϕ ≡ ψ + ξ, and χ ≡ ψ − ξ)

i∂tϕ = − 1

2m
∆(ϕ+ χ) +mϕ

i∂tχ =
1

2m
∆(ϕ+ χ)−mχ. (1.44)

In matrix form, and with ~ and c restored,

i~∂t
(
ϕ
χ

)
= − ~2

2m

(
1 1
−1 −1

)
∆

(
ϕ
χ

)
+mc2

(
1 0
0 −1

)(
ϕ
χ

)
. (1.45)



Chapter 2

Relativistic transformations

Before discussing the Dirac equation, and exploring its consequences, we set up some mathematics
for working in 3 + 1-dimensional spacetime. These constructions will be motivated by analogies
with three-dimensional space.

We set ~ = c = 1 from now on.

2.1 Lie groups in physics
2.1.1 Rotations in 3D
Consider rotations in a three-dimensional space, i.e., elements of the group SO(3). To start with,
take the rotation axis to be the z axis:

R3(α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 |α|�1
≈ I− iαM3, where M3 =

0 −i 0
i 0 0
0 0 0

 (2.1)

is the infinitesimal generator of rotations around the z axis. It seems redundant to introduce
the imaginary unit i in front of the generator (after all, we are dealing with classical spatial
rotations). Nonetheless, this convention is common in physics, and so we adopt it.

Similarly, we can infer rotation generators around all three axes. Their matrix elements, and
commutation relations read

(Mi)jk = −iεijk , [Mi,Mj ] = iεijkMk. (2.2)

A finite rotation around an arbitrary unit vector n can be obtained as a succession of many
rotations by small (eventually infinitesimal) angle:

Rn(α) =
(
Rn(

α
N )
)N

= lim
N→∞

(
I− i

α

N
njMj

)N
= e−iαn

jMj . (2.3)

As we know from quantum mechanics, there are many triples of matrices that satisfy the
‘angular momentum’ commutation relations in Eq. (2.2), and they are distinguished by the value
of spin: 1

2 , 1,
3
2 , . . .. Smallest such matrices are obtained easily from the Pauli matrices:

[σi, σj ] = 2iεijkσ
k →

[
σi

2
,
σj

2

]
= iεijk

σk

2
. (2.4)

12
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Now
Un(α) ≡ exp

(
− i

2
αn · σ

)
∈ SU(2), where n · σ ≡ njσj , (2.5)

is an exponential analogous to Rn(α), where the generators Mj have been replaced by 1
2σ

j .
Vectors vi can be rotated using the SU(2) matrices if we represent them by traceless Hermitian

matrices (or ‘Pauli vectors’)

V = viσi =

(
v3 v1 − iv2

v1 + iv2 −v3
)
, with detV = −v2, (2.6)

since then

U†
n(α)σ

i Un(α) =
(
Rn(α)

)
ij
σj → Un(α)VU†

n(α) = σj
(
Rn(α)

)
ji
vi. (2.7)

We will prove this in Exercise 4, and only note here that the transformation V 7→ UVU†, for U
unitary, maps Pauli vectors to Pauli vectors, and preserves the norm:

Tr(UVU†) = TrV = 0 , (UVU†)† = UVU† , det(UVU†) = detV. (2.8)

Moreover, U and −U yield the same rotation (SU(2) is a double cover of SO(3)).
We have seen that rotations in a 3D (Euclidean) space can be represented either by 3 by 3

matrices ∈ SO(3), or by 2 by 2 matrices ∈ SU(2). The latter can, in addition, act on (Pauli)
spinors, i.e., on elements of C2.

2.1.2 Lie groups and Lie algebras
The matrix groups SO(3) and SU(2) are instances of Lie groups, with their generators Mi and 1

2σ
i

spanning the respective Lie algebras so(3) and su(2). Having the same commutation relations,
Eqs. (2.2) and (2.4), we identify so(3) and su(2) as two representations of the same (abstract)
Lie algebra, usually denoted su(2).

In general, a Lie group is a group whose elements depend analytically on a finite number of
parameters λa. Near the identity, the group elements can be approximated by linear combinations
of generators Aa — elements of the corresponding Lie algebra with commutator as the product
operation. The generators satisfy certain commutation rules

[Aa,Ab] = fabcAc, (2.9)

where fabc are referred to as the ‘structure constants’ as they determine the structure of the
algebra. Finite transformations are then obtained via exponentiation of the generators (although,
this operation may not always cover the entire Lie group).

In physics the Lie groups are typically groups of transformations that act on spacetime
(rotations, Lorentz transformations), or on an ‘internal space’ of the theory. As an example, the
set of N by N real antisymmetric matrices is closed under commutation, and so forms a Lie
algebra. The corresponding Lie group is a group of rotations in RN (this can correspond to a
field with N components), since its elements eA are orthogonal, and have determinant 1:

(eA)T = eA
T

= e−A = (eA)−1, and det eA = eTrA = e0 = 1. (2.10)

(Here, the relation det exp = expTr can be easily proved by diagonalization A = PDP−1 if A is
diagonalizable, or with a help of the Jordan normal form for A generic.) In physics it is common
to use Hermitian generators Ta = iAa, so that

eλaAa = e−iλaTa and [Ta,Tb] = ifabcTc. (2.11)
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The fact that a group is closed under multiplication is reflected in its algebra being closed
under commutation. The link is provided by the Baker-Campbell-Hausdorff formula for multi-
plication of matrix exponentials:

eAeB = exp
(
A+ B+

1

2
[A,B] +

1

12
[A− B, [A,B]] + . . .

)
, (2.12)

where the dots represent higher commutators. This formula can be rather cumbersome, but we
will actually only need a restricted version:

eAeB = eA+Be
1
2 [A,B] provided [A, [A,B]] = [B, [A,B]] = 0, (2.13)

which we derive in Exercise 5 with a help of another very useful formula, the Campbell identity

eA B e−A = B+ [A,B] +
1

2!
[A, [A,B]] + . . . =

∞∑
n=0

Kn
n!
, where K0 = B, Kn+1 = [A,Kn] (∀n).

(2.14)
With the definitions (common in mathematics)

AdeA : B 7→ eA B e−A , adA : B 7→ [A,B] we can write succinctly AdeA(B) = eadA(B).
(2.15)

2.2 Lorentz group and Lorentz algebra
Lorentz transformations x′µ = Lµνx

ν are defined by the constraint (recall Eq. (1.8))

gµνL
µ
ρL

ν
σ = gρσ, or, in matrix form, LT g L = g. (2.16)

To find the generators we consider infinitesimal transformations Lµν = δµν − iε`µν , and expand
the constraint to obtain

gµν(δ
µ
ρ − iε`µρ)(δ

ν
σ − iε`νσ) = gρσ → `ρσ = −`σρ. (2.17)

On the infinitesimal level, a Lorentz transformation is given by an antisymmetric matrix `ρσ,
which can be linearly combined out of 6 independent (basis) matrices. We can write the linear
combination using a pair of, effectively antisymmetrized, spacetime indices:

`ρσ =
1

2
ωµν(M

µν)ρσ, where ωµν = −ωνµ, and (Mµν)ρσ = i(gµρδνσ − gνρδµσ), (2.18)

so that the basis matrices satisfy Mµν = −Mνµ, (Mµν)ρσ = −(Mµν)σρ. (The factor 1
2 is included

to compensate for double counting in the summation over µ and ν.)
With this choice of generators the infinitesimal Lorentz transformations determined by pa-

rameters ωµν are simply given by

`ρσ =
i

2
ωµν(δ

µ
ρ δ
ν
σ − δνρδ

µ
σ) = iωρσ → x′

µ ≈ (δµν − iε`µν)x
ν = xµ + ε ωµνx

ν . (2.19)

Finite Lorentz transformations are obtained by exponentiation as in Eq. (2.3),

L = exp

(
− i

2
ωµνM

µν

)
. (2.20)
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At this point it is worth to note that Lorentz transformations, defined by Eq. (2.16), fall
into four separate classes. Depending on whether det L is +1 or −1 they are called proper or
improper, and depending on whether L0

0 is ≥ 1 or ≤ −1 they are called orthochronous or non-
orthochronous. The transformations obtained by exponentiation of generators in Eq. (2.20) form
the proper orthochronous class, as they are continuously connected to the identity transformation
(by shrinking ωµν to zero). All other transformations in the Lorentz group can be obtained from
these by using two discrete transformations,

parity LP = diag(1,−1,−1,−1), and time reversal LT = diag(−1, 1, 1, 1). (2.21)

Let us draw our attention to the Lorentz algebra. In Exercise 6 we show that the Lorentz
generators Mµν obey the commutation relations

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ). (2.22)

Alternatively, one can pass from Mµν to 3 + 3 generators

Ji ≡
1

2
εijkM

jk and Ki ≡ M0i, (2.23)

in terms of which the commutation relations read

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = −iεijkJk. (2.24)

(The relation between Mµν and (Ji,Ki) is the same as between the Faraday tensor Fµν and the
magnetic and electric field (Bi, Ei) — see Eq. (4.2).) The generators Ji correspond to spatial
rotations around the axes xi, while Ki correspond to boosts along xi — from the definition (2.18)
we obtain

(Ji)
j
k = −iεijk, (Ji)

0
µ = (Ji)

µ
0 = 0, and (Ki)

j
k = 0, (Ki)

0
µ = (Ki)

µ
0 = iδiµ. (2.25)

The exponential representation of finite Lorentz transformations can be cast in terms of the
generators Ji, Ki as follows:

L(ωµν) = exp

(
− i

2
ωµνM

µν

)
= exp

(
− i

2
ωijM

ij − i ω0iM
0i

)
= exp

(
−iθiJi − iζiKi

)
= L(θ, ζ)

(2.26)
where we have introduced the rotation parameters θ = (θ1, θ2, θ3), and the boost parameters
ζ = (ζ1, ζ2, ζ3) via the relations

ωij = εijkθ
k , ω0i = ζi. (2.27)

A rotation by angle α around a unit vector n is implemented by θ = αn, and a boost by velocity
v is given by the rapidity (vector) ζ = v

|v| arctanh
|v|
c (see Exercise 7 for an example).

In Section 2.1.1 we saw that the 2 by 2 matrices 1
2σ

i, relevant for the description of spin
in quantum mechanics, satisfy the same commutation rules as the rotation generators Mi. Can
we similarly find a simple representation of the commutation relations (2.24) for the Lorentz
generators Ji, Ki? Clearly, the first line is satisfied again by 1

2σ
i, and it is not hard to realize

that for the boost generators we can take ± i
2σ

i. Hence, we find two possibilities: the ‘left-handed’
representation

JLi =
σi

2
, KLi = −iσ

i

2
, (2.28)
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and the ‘right-handed’ representation

JRi =
σi

2
, KRi = i

σi

2
. (2.29)

In the Dirac theory one combines the two representations into 4 by 4 matrices

JL⊕Ri =

(
1
2σ

i O
O 1

2σ
i

)
, KL⊕Ri =

(
− i

2σ
i O

O i
2σ

i

)
, (2.30)

which again satisfy the commutation rules (2.24).

2.3 Clifford algebra
Clifford algebras found their way to physics through the work of Pauli on non-relativistic spinning
particles, and through Dirac’s relativistic theory, but they had been know in mathematics for
about half a century.

Let us recall that in Pauli’s theory the σ-matrices can be used to express the scalar product
between any two three-vectors as

a · b =
1

2
{aiσi, bjσj}, since {σi, σj} = 2δij . (2.31)

Geometrically, the matrices σi represent an orthonormal basis in the 3D space, and their products
generate the Clifford algebra of this space.

In spacetime we look for matrices γµ such that

{γµ, γν} = 2gµν , or γµγν = −γνγµ + 2gµν . (2.32)

Finding them will allow us to write a · b = 1
2{γ

µaµ, γ
νbν}, and hence implement the Dirac’s idea

of factorizing the Klein-Gordon operator. We shall see explicit representations of the γ-matrices
in Section 2.3.1, but for the moment let us stay on an abstract level.

Taking products of γµ’s, we obtain a set of matrices

{I , γµ , γµγν , γµγνγρ , γ0γ1γ2γ3}µ<ν<ρ. (2.33)

Other (higher) products can be reduced to these using anticommutativity γµγν = −γνγµ for
µ 6= ν, and the fact that (γ0)2 = I, and (γ1)2 = (γ2)2 = (γ3)2 = −I. We have in total
1 + 4+ 6+ 4+ 1 = 16 matrices, which are linearly independent, as argued in Exercise 11 on the
basis of the γ-matrix identities of Exercise 8. They generate the Clifford algebra of spacetime
(in physics referred to as the Dirac algebra).

The identity matrix and its multiples represent numbers (scalars). Single matrices γµ repre-
sent an orthonormal basis of the Minkowski spacetime. Products of two are commonly presented
as

σµν ≡ i

2
[γµ, γν ] (for µ 6= ν : σµν = iγµγν), (2.34)

and they can be visualized as planes spanned by the vectors γµ, γν . Products of three γ-
matrices represent three-dimensional spacetime hyperplanes. The last element, the product of
all γ-matrices, is conventionally cast as

γ5 = iγ0γ1γ2γ3, so that (γ5)2 = 1, and it satisfies γµγ5 = −γ5γµ. (2.35)
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Let us now try to understand the role of the elements σµν in the mathematical description
of the Minkowski spacetime. First, observe a key identity

i

2
[σµν , γρ] = −1

4
[2gµν − 2γνγµ, γρ] =

1

2

(
γν{γµ, γρ} − {γν , γρ}γµ

)
= gµργν − gνργµ, (2.36)

where we have used the ‘anticommutator’ Leibniz rule

[AB,C] = ABC + (ACB −ACB)− CAB = A{B,C} − {A,C}B. (2.37)

Using the definition of the Lorentz generators Mµν , Eq. (2.18), we can also write

i

2
[σµν , γρ] = (gµρδνσ − gνρδµσ)γ

σ = (−iMµν)ρσγ
σ. (2.38)

With a help of the Jacobi identity in the form
[
A, [B,C]

]
=
[
[A,B], C

]
−
[
[A,C], B

]
we find

[σµν , σρσ] =
i

2

[
σµν , [γρ, γσ]

]
=
i

2

[
[σµν , γρ], γσ

]
− i

2

[
[σµν , γσ], γρ

]
= [gµργν − gνργµ, γσ]− [gµσγν − gνσγµ, γρ]

= −2i(gµρσνσ − gµσσνρ + gνσσµρ − gνρσµσ), (2.39)

which shows that matrices 1
2σ

µν satisfy the same commutation relations as the Lorentz generators
Mµν , Eq. (2.22). This is a spacetime analogue of the relation between rotation generators Mi

and 1
2σ

i in Sec. 2.1.1.
It is now natural to define the spin representation

S(L) = exp

(
− i

4
ωµνσ

µν

)
of a Lorentz transformation L = exp

(
− i

2
ωµνM

µν

)
. (2.40)

The spacetime analogue of formula (2.7) then reads

S(L)−1γµS(L) = Lµνγ
ν , (2.41)

which can be proved using Eq. (2.38), and the Campbell identity (2.14) (analogously to Exer-
cise 4). (Mind the inverse instead of Hermitian conjugation — the generators σµν are actually
not Hermitian, as we will see when adopting a concrete representation of the γ-matrices.)

With S(L) we may not only transform four-vectors, but also consider an action of the form
S(L)Ψ on complex column vectors, referred to as the Dirac spinors — a spacetime analogue of
the Pauli spinors.

2.3.1 Representations of γ-matrices
Explicit representations of γµ’s are found in the space of 4 by 4 matrices. (Smaller dimensionality
would not allow for the 16 independent matrices in Eq. (2.33).) In Exercise 9 we show that the
matrices

γ0D =

(
I O
O −I

)
= σ3 ⊗ I , γiD =

(
O σi

−σi O

)
= iσ2 ⊗ σi (2.42)

that constitute the so-called Dirac (or ‘standard’) representation indeed satisfy the defining
Clifford algebra relation (2.32). Here we have also displayed the tensor product notation, which
often proves efficient when handling larger matrices.
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The tensor (or Kronecker) product A ⊗ B, of an n × n′ matrix A, and an m ×m′ matrix B,
is an (nm)× (n′m′) matrix defined by

A⊗ B =

A11B . . . A1n′B
...

...
An1B . . . Ann′B

 . (2.43)

This product is distributive and associative, but not commutative (A⊗B 6= B⊗A), and satisfies
the fundamental identity

(A⊗ B)(C⊗ D) = (AC)⊗ (BD). (2.44)

Let us also note that (A⊗ B)−1 = A−1 ⊗ B−1, and (A⊗ B)† = A† ⊗ B†.
Using this notation we can calculate, as an example,

γ5D = i
(
(σ3(iσ2)3

)
⊗ (σ1σ2σ3) = (σ3σ2)⊗ (iσ3σ3) = σ1 ⊗ I =

(
O I
I O

)
. (2.45)

Under Hermitian conjugation the γ-matrices in Dirac representation behave as follow:

(γ0D)
† = γ0D, (γjD)

† = −γjD = γ0Dγ
j
Dγ

0
D → (γµD)

† = γ0Dγ
µ
Dγ

0
D, and (γ5D)

† = γ5D. (2.46)

According to Pauli’s fundamental theorem on γ-matrices (for a proof see [10, p. 132]) any other
representation of γ-matrices can be obtained by a similarity transformation γ̃µ = UγµDU

−1 (where
U is unique up to a scalar factor). In addition, the matrix U is unitary if (and only if) the
new representation γ̃µ exhibits the same conjugation properties (2.46). The statement that a
similarity transformation yields again a representation of the Clifford algebra is in fact easy to
prove,

{γ̃µ, γ̃ν} = {UγµDU
−1,UγνDU

−1} = U{γµD, γ
ν
D}U−1 = U 2gµνIU−1 = 2gµνI, (2.47)

as well as the fact that unitary transformations preserve the conjugation properties.
As an important example, the Weyl (or ‘chiral’) representation is obtained as follows:

γµW = UγµDU
†, where U =

1√
2

(
I −I
I I

)
=

1√
2
(I+ γ5Dγ

0
D) is unitary. (2.48)

Since U† = 1√
2
(I+ γ0Dγ

5
D), and γiγ0γ5 = γ0γ5γi, we find

γ0W = Uγ0DU
† = UU†γ5D = γ5D,

γiW = UγiDU
† = UU†γiD = γiD,

γ5W = iγ5Dγ
1
Dγ

2
Dγ

3
D = γ5Dγ

0
Dγ

5
D = −γ0D. (2.49)

In Exercise 10 we show that the spin representation of the rotation generators reads explicitly

1

4
εijkσ

jk
D,W =

1

2
Σi, where Σi ≡

(
σi O
O σi

)
= I⊗ σi, (2.50)

and for the boost generators we obtain

1

2
σ0i
D =

i

2

(
O σi

σi O

)
=
i

2
σ1 ⊗ σi ,

1

2
σ0i
W =

i

2

(
−σi O
O σi

)
= − i

2
σ3 ⊗ σi. (2.51)
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The spin representation of a finite Lorentz transformation determined by parameters θ and ζ
reads (in the Dirac or Weyl representation, respectively)

S(L)D,W = exp

(
− i

2
θiΣi − i

2
ζiσ0i

D,W

)
. (2.52)

Note that in the Weyl representation of γ-matrices the Lorentz generators coincide with JL⊕Ri

and KL⊕Ri from Eq. (2.30). In fact, we do not need to introduce the algebra of γ-matrices to
infer the spin representation of the Lorentz generators. Notwithstanding, we do need the γ-
matrices in order to represent spacetime vectors by γµaµ, and Lorentz-transform them using the
formula (2.41).

The notion of representation in the context of Clifford algebras should not be confused with
the notion of representation in the context of Lie algebras. In the first case we look for matrices
that satisfy the anticommutation rules {γµ, γν} = 2gµν (and find, e.g., γµD or γµW ), whereas in
the second case we look for matrices that satisfy certain commutation relations [Aa,Ab] = fabcAc
(and find, e.g., Mµν or 1

2σ
µν
D,W ).
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2.4 Exercises
Exercise 4. Show that for α ∈ R and a unit vector n the following identity holds:

U† σi U = Rijσ
j , where U = exp

(
− i

2
αn · σ

)
and R = exp(−iαnkMk). (2.53)

Solution:

The identity is a simple consequence of the formula (2.14). From the commutator[ i
2
αn · σ, σi

]
=
i

2
αnk 2iεkijσ

j = −iα nk(Mk)ijσ
j (2.54)

we find

e
i
2αn·σσie−

i
2αn·σ = σi + (−iαnkMk)ijσ

j +
1

2!
(−iαnkMk)ij(−iαn`M`)jmσ

m + . . .

= (e−iαn
kMk)ijσ

j . (2.55)

Exercise 5. Restricted Baker-Campbell-Hausdorff formula. Show that

eAeB = eA+Be
1
2 [A,B] provided [A, [A,B]] = [B, [A,B]] = 0. (2.56)

Solution:

First we note that formula (2.14) for a matrix B satisfying [A, [A,B]] = 0 reads simply

eA B e−A = B+ [A,B]. (2.57)

Now consider a matrix-valued function

F(s) = esAesB, (2.58)

and calculate
d

ds
F(s) = esA(A+ B)esB = esA(A+ B)e−sA F(s) =

(
A+ B+ s[A,B]

)
F(s). (2.59)

Integrating this differential equation, and taking into account the initial condition F(0) = I, we
obtain

F(s) = exp
(
sA+ sB+

s2

2
[A,B]

)
, (2.60)

which, when compared with the original definition (2.58), yields for s = 1 the desired formula.

Remarks:

For a generic matrix-valued function A(s),

d

ds
eA(s) 6= dA(s)

ds
eA(s), (2.61)

since it is not guaranteed that A(s) and dA(s)
ds commute. If they do commute then equality holds.

For example, for any scalar-valued function α(s) and a constant matrix A it does hold that

d

ds
eα(s)A =

dα(s)

ds
A eα(s)A. (2.62)
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In our case, i.e., under the assumption (2.56), we can factorize F(s) = es(A+B)e
s2

2 [A,B], which
can be differentiated using the Leibniz rule to verify that it indeed satisfies the differential
equation (2.59).

Exercise 6. Commutation relations of the Lorentz algebra. Show that the matrices

(Mµν)ρσ = i(gµρδνσ − gνρδµσ) (2.63)

satisfy the commutation relations

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ + gνσMµρ − gνρMµσ). (2.64)

Solution:

In components we have

(Mµν)κλ(M
ρσ)λτ = i2(gµκδνλ − gνκδµλ)(g

ρλδστ − gσλδρτ )

= i2(gµκgρνδστ − gµκgσνδρτ − gνκgρµδστ + gνκgσµδρτ ),

(Mρσ)κλ(M
µν)λτ = i2(gρκgµσδντ − gρκgνσδµτ − gσκgµρδντ + gσκgνρδµτ ). (2.65)

Subtracting the two expressions yields

[Mµν ,Mρσ]κτ

= i2
(
gνρ(gµκδστ − gσκδµτ )− gνσ(gµκδρτ − gρκδµτ )− gµρ(gνκδστ − gσκδντ ) + gµσ(gνκδρτ − gρκδντ )

)
= i
(
gνρ(Mµσ)κτ − gνσ(Mµρ)κτ − gµρ(Mνσ)κτ + gµσ(Mνρ)κτ

)
. (2.66)

Dropping the component indices, and reshuffling the terms, we obtain the desired result.

Exercise 7. Lorentz boost. Find explicit form of the Lorentz transformation matrix L = e−iζK1 .

Solution:

First we recall that from Eqs. (2.20) and (2.23)

(K1)
ρ
σ = (M01)ρσ = i(g0ρδ1σ − g1ρδ0σ) = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 = i

(
σ1 O
O O

)
(2.67)

Since functions on block-diagonal matrices act blockwise we have

L = e−iζK1 =

(
eζσ

1 O
O I

)
, (2.68)

and since (σ1)2 = I we find

eζσ
1

= cosh(ζσ1) + sinh(ζσ1) = (cosh ζ)I+ (sinh ζ)σ1 =

(
cosh ζ sinh ζ
sinh ζ cosh ζ

)
, (2.69)

where we have have realised that the Taylor series for the function cosh(.) only contains even
powers, whereas the one for sinh(.) only contains odd powers of its argument.
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Remarks:

The rapidity ζ is related to the boost velocity β = v/c by tanh ζ = β, and to the relativistic
γ-factor by cosh ζ = γ. The particle is being boosted by velocity β, i.e., the new coordinate
system is moving with velocity −β with respect to the original coordinate system.

Exercise 8. Properties of γ-matrices. Show that for 4 by 4 matrices the relation {γµ, γν} = 2gµν

implies

1. γµγµ = 4 I (2.70)
2. γµγνγµ = −2γν (2.71)
3. γµγνγργµ = 4gνρ I, (2.72)

and the ‘trace identities’

4. Tr(γµ) = 0 (2.73)
5. Tr(γµ1 . . . γµ2n+1) = 0 (∀n = 0, 1, . . .) (2.74)
6. Tr(γµγν) = 4gµν (2.75)
7. Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (2.76)
8. Tr(γ5) = 0 (2.77)
9. Tr(γµγνγ5) = 0 (2.78)
10. Tr(γµγνγργσγ5) = −4iεµνρσ. (2.79)

Solution:

1.
γµγµ = gµνγ

µγν = (γ0)2 − (γ1)2 − (γ2)2 − (γ3)2 = 4 I. (2.80)

2. From γµγν = −γνγµ + 2gµν ,

γµγνγµ = −γνγµγµ + 2gµνγµ = −4γν + 2γν = −2γν . (2.81)

3. Similarly,

γµγνγργµ = −γνγµγργµ + 2gµνγργµ = −γν(−2γρ) + 2γργν = 2{γν , γρ} = 4gνρ I. (2.82)

4. Using (γ5)2 = I, the anticommutativity γµγ5 = −γ5γµ (∀µ), and cyclic property of the
trace,

Tr(γµ) = Tr(γ5γ5γµ) = −Tr(γ5γµγ5) = −Tr(γ5γ5γµ) = −Tr(γµ) ⇒ Tr(γµ) = 0.
(2.83)

5. Similarly,

Tr(γ5γ5γµ1 . . . γµ2n+1) = −Tr(γ5γµ1 . . . γµ2n+1γ5) ⇒ Tr(γµ1 . . . γµ2n+1) = 0. (2.84)

6.
Tr(γµγν) =

1

2
Tr({γµ, γν}) = Tr(gµν I) = 4gµν . (2.85)
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7. We repeatedly use the identity γµγν = −γνγµ + 2gµν ,

Tr(γµγνγργσ) = −Tr(γνγµγργσ) + 2gµν Tr(γργσ)

= Tr(γνγργµγσ)− 2gµρ Tr(γνγσ) + 2gµν4gρσ

= −Tr(γνγργσγµ) + 2gµσ4gµσ − 2gµρ4gνσ + 2gµν4gρσ, (2.86)

and cycle the γµ back to the front to find

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ). (2.87)

8. Since, (γ0)2 = I, and γ0γ5 = −γ5γ0,

Tr(γ5) = Tr(γ0γ0γ5) = −Tr(γ0γ5γ0) = −Tr(γ0γ0γ5) = −Tr(γ5) ⇒ Tr(γ5) = 0.
(2.88)

9. For µ = ν reduces to Eq. (2.77). To illustrate the case µ 6= ν, let us consider, for concrete-
ness, µ = 1 and ν = 2:

Tr(γ1γ2γ5) = iTr(γ1γ2γ0γ1γ2γ3) = −iTr(γ0γ3) = 0 (2.89)

by Eq. (2.75).

10. If any two indices are equal, we come back to Eq. (2.78). If all four indices differ, the γ-
matrices anticommute, and can be reorder using the spacetime Levi-Civita symbol, yielding

Tr(γµγνγργσγ5) = εµνρσ Tr(γ0γ1γ2γ3γ5) = −iεµνρσ Tr(γ5γ5) = −4iεµνρσ. (2.90)

Exercise 9. Dirac representation of γ-matrices. Verify that the matrices

γ0D =

(
I O
O −I

)
= σ3 ⊗ I , γiD =

(
O σi

−σi O

)
= iσ2 ⊗ σi (2.91)

satisfy, for all µ, ν, the Clifford algebra relation {γµD, γνD} = 2gµν .

Solution:

{γ0D, γ0D} = 2(γ0D)
2 = 2 I,

{γ0D, γiD} =

(
I O
O −I

)(
O σi

−σi O

)
+

(
O σi

−σi O

)(
I O
O −I

)
=

(
O σi

σi O

)
+

(
O −σi
−σi O

)
= O,

{γiD, γ
j
D} = (iσ2)2 ⊗ (σiσj) + (iσ2)2 ⊗ (σjσi) = −I⊗ {σi, σj} = −2δijI. (2.92)

Exercise 10. Lorentz generators in Dirac and Weyl representation. Find explicit matrix form
of

1.
1

4
εijkσ

jk
D,W and 2.

1

2
σ0i
D,W . (2.93)

Solution:
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1. Since γiD = γiW , we can calculate at once

1

4
εijkσ

jk
D,W =

i

8
εijk[γ

j
D, γ

k
D] =

i

4
εijkγ

j
Dγ

k
D =

i

4
εijk(iσ

2)2 ⊗ (σjσk) = − i

4
εijkI⊗ (iεjk`σ

`),

(2.94)
and as εijkεjk` = 2δi`, obtain

1

4
εijkσ

jk
D,W =

1

2
δi` I⊗ σ` =

1

2
I⊗ σi =

1

2

(
σi O
O σi

)
. (2.95)

2.

1

2
σ0i
D =

i

4
[γ0D, γ

i
D] =

i

2
γ0Dγ

i
D =

i

2

(
I O
O −I

)(
O σi

−σi O

)
=
i

2

(
O σi

σi O

)
,

1

2
σ0i
W =

i

2
γ0W γ

i
W =

i

2
γ5Dγ

i
D =

i

2

(
O I
I O

)(
O σi

−σi O

)
=
i

2

(
−σi O
O σi

)
. (2.96)

Exercise 11. Basis in the space of 4 by 4 matrices. Based on the results of Exercise 8 show
that the matrices

{I , γµ , γµγν , γµγνγρ , γ0γ1γ2γ3}µ<ν<ρ (2.97)

are linearly independent.

Solution:

First note that traces of all the elements apart from I vanish:

Tr(γµ) = Tr(γµγν) = Tr(γµγνγρ) = Tr(γ0γ1γ2γ3) = 0, provided µ < ν < ρ, (2.98)

due to the trace identities (2.73), (2.75), (2.74) and (2.77).
Now set to zero an arbitrary (complex) linear combination:

α0I+ αµγ
µ + αµνγ

µγν + αµνργ
µγνγρ + α0123γ

0γ1γ2γ3 = 0, (2.99)

where the summations run only over µ < ν < ρ. Taking the trace yields

α0 Tr(I) = 4α0 = 0 ⇒ α0 = 0. (2.100)

Any other α-coefficient can be rendered zero by first multiplying Eq. (2.99) by the corresponding
γ-monomial, and then taking the trace. For example, choosing α01 we have

α0γ
0γ1+αµγ

0γ1γµ+αµνγ
0γ1γµγν+αµνργ

0γ1γµγνγρ+α0123γ
2γ3 = . . .+α01I+. . . = 0, (2.101)

where ‘. . .’ contain nonzero power of γ’s, which vanish upon tracing.
That is, vanishing of the linear combination (2.99) implies vanishing of all its coefficients,

hence the 16 matrices (2.97) are linearly independent, and for 4 by 4 matrices form a basis of
C4,4.



Chapter 3

Dirac theory – basics

3.1 Dirac equation and its Lorentz covariance
With a help of the γ-matrices satisfying the anticommutation rules of the Clifford algebra,
{γµ, γν} = 2gµν , Dirac was able to famously factorize the Klein-Gordon operator (see Sec-
tion 1.3.3), writing the Klein-Gordon equation in the form

(i∂µi∂µ −m2)Ψ = (iγµ∂µ +m)(iγν∂ν −m)Ψ = 0, (3.1)

and postulate a stronger condition on the wave-function Ψ — the Dirac equation

(iγµ∂µ −m)Ψ(x) = 0. (3.2)

(The sign before m can be flipped by a change of Clifford algebra representation γµ → −γµ.)
This equation is sometimes written as

(iγ · ∂ −m)Ψ = 0 or (i/∂ −m)Ψ = 0. (3.3)

The former form is engraved on Dirac’s memorial tile in Westminster Abbey. The latter one uses
Feynman’s slash notation /a ≡ γµaµ, which is quite common in physics, but we shall not employ
it too much in these lectures.

By default, we will adopt the standard representation of γ-matrices given explicitly by the
4 by 4 matrices from Eq. (2.42). Ψ = (ψα)

4
α=1 is therefore a four-component (Dirac) wave-

function. For brevity we will drop the subscript D, and simply write γµ instead of γµD. In a
different representation γ̃µ = UγµU−1 we have

0 = U(iγµ∂µ−m)Ψ(x) = (iUγµU−1∂µ−m)UΨ(x) = (iγ̃µ∂µ−m)Ψ̃(x), where Ψ̃(x) = UΨ(x)
(3.4)

is a wave-function in the new representation.
What are the transformation properties of the Dirac equation under Lorentz transformations

x′
µ
= Lµνx

ν? The differential operator γµ∂µ (also known as the Dirac operator) transforms as

γµ∂′µ = γµ
∂xν

∂x′µ
∂

∂xν
= (L−1)νµγ

µ ∂ν = S(L)γνS(L)−1 ∂ν (3.5)

where we used relation (2.41) for L−1, and the fact that the spin representation satisfies S(L−1) =
S(L)−1. Hence, we find that the Dirac equation transforms covariantly as

(iγµ∂′µ −m)Ψ′(x′) = S(L)(iγν∂ν −m)S(L)−1Ψ′(x′(x))︸ ︷︷ ︸
Ψ(x)

= 0, (3.6)

25
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once we identify the Lorentz-transformed Dirac wave-function with

Ψ′(x′) = S(L)Ψ(x). (3.7)

(Here we consider only proper orthochronous Lorentz transformations. Discrete transformations,
parity and time reversal, will be addressed in Sec. 4.2.) We observe that for rotations, according
to Eq. (2.52),

S(L) = exp

(
− i

2
θiΣi

)
=

(
exp

(
− i

2θ
iσi
)

O
O exp

(
− i

2θ
iσi
)) , (3.8)

both the upper and the lower half of Ψ transform as two-component Pauli spinors — the Dirac
theory describes spin- 12 particles, and the four-component wave-function Ψ is dubbed the Dirac
spinor (or bispinor).

Hermitian conjugation of the transformation law (3.7) produces

(
Ψ′(x′)

)†
=
(
Ψ(x)

)†
S(L)†, with S(L) = exp

(
− i

4
ωµνσ

µν

)
. (3.9)

Since

(γµ)† = γ0γµγ0 → (σµν)† = − i

2
(γµγν − γνγµ)† = − i

2
γ0(γνγµ − γµγν)γ0 = γ0σµνγ0,

(3.10)
the Lorentz generators 1

2σ
µν are Hermitian for rotations, but anti-Hermitian for boosts. As a

result, the spin representation of Lorentz transformations is not unitary, but rather satisfies

S(L)† = exp

(
i

4
ωµνγ

0σµνγ0
)

= γ0S(L)−1γ0, (3.11)

i.e., S(L) is unitary for rotations, but for boosts it is Hermitian.
In the Dirac theory, more applicable than Hermitian conjugation turns out to be its slight

modification — the Dirac conjugation

Ψ̄(x) ≡ Ψ†(x)γ0. (3.12)

The transformation law for Dirac-conjugated spinors reads

Ψ̄′(x′) =
(
Ψ(x)

)†
S(L)†γ0 = Ψ̄(x)S(L)−1, (3.13)

and the equation satisfied by Ψ̄(x) can be derived from the Dirac equation as follows:

iγµ∂µΨ−mΨ = 0 / †

−i∂µΨ†γ0γµγ0 −mΨ† = 0 / γ0

i∂µΨ̄γ
µ +mΨ̄ = 0. (3.14)

3.2 Plane wave solutions
The Dirac equation (3.2) is a linear differential equation with constant coefficients (albeit with
certain matrix structure), and so we look for solutions in the form of plane waves (with certain
polarization states). From Eq. (3.1) it is clear that these must also satisfy the relativistic energy-
momentum dispersion relation pµpµ = (p0)

2 − p2 = m2. To take into account both positive
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and negative energies, it is common to distinguish two types of plane waves parametrized by the
spatial momentum p:

Ψ(+)
p (x) = u(p)e−ip·x,

Ψ(−)
p (x) = v(p)e+ip·x, where in both cases p0 = ωp ≡

√
p2 +m2. (3.15)

They satisfy i∂tΨ(+)
p = ωpΨ

(+)
p , so Ψ

(+)
p is a positive-energy solution, while i∂tΨ(−)

p = −ωpΨ
(−)
p ,

so Ψ
(−)
p is a negative-energy solution.

With the plane wave ansatz the Dirac equation reduces to an algebraic relation for the
polarization spinor u(p) (for positive energy), or v(p) (negative energy):

(γµpµ −m)u(p) = 0, or (γµpµ +m)v(p) = 0, (3.16)

respectively.
We first investigate the positive-energy equation in particle’s rest frame (hence assuming

m > 0). In this case the four-momentum reads p(0)µ = (m,0), γµp(0)µ = γ0m, with γ0 = σ3 ⊗ I,
and Eq. (3.16) reduces to

(γ0 − 1)u(0) = −2

(
O O
O I

)
u(0) = 0. (3.17)

This tells that the lower components of u(0) vanish, and so we get two linearly independent
solutions, characterized by the value of spin projection along the z-direction:

u(0, s) =

χs0
0

 , where s =
1

2
,−1

2
, and χ 1

2
=

(
1
0

)
, χ− 1

2
=

(
0
1

)
. (3.18)

The spin sum ∑
s

u(0, s)ū(0, s) =
∑
s

u(0, s)uT (0, s)γ0 =

(
I O
O O

)
=

1

2
(γ0 + 1) (3.19)

is the rest-frame projector on states with positive energy.
A positive-energy solution with an arbitrary spatial momentum p is obtained from a rest-

frame solution u(0) by boosting. Denoting the boosted four-momentum by pν = L µ
ν p

(0)
µ , we

observe that

0 = S(L)(γµp(0)µ −m)S(L)−1S(L)u(0) = (γνL µ
ν p

(0)
µ −m)S(L)u(0) = (γµpµ −m)S(L)u(0),

(3.20)
so

u(p) = S(L)u(0), where S(L) =
γµγ0pµ +m√
2m

√
p0 +m

=

√
p0 +m√
2m

(
I σ·p

p0+m
σ·p
p0+m

I

)
(3.21)

is the boost’s spin representation, as shown in Exercise 12. Two independent positive-energy
polarization spinors (for arbitrary p) then read

u(p, s) = S(L)u(0, s) =

√
p0 +m√
2m

(
χs

σ·p
p0+m

χs

)
. (3.22)
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Since Dirac conjugation of these yields

ū(p, s) =
(
S(L)u(0, s)

)†
γ0 = u†(0, s)S(L)†γ0 = ū(0, s)S(L)−1, (3.23)

we find from Eq. (3.19) the spin sum (i.e., the projector on positive-energy states) for arbitrary
p,∑

s

u(p, s)ū(p, s) = S(L)
∑
s

u(0, s)ū(0, s)S(L)−1 =
1

2m
S(L)(γ0m+m)S(L)−1 =

γµpµ +m

2m
.

(3.24)
The negative-energy plane waves can be treated similarly. We find again two independent

polarization spinors for each value of p:

v(0, s) =

 0
0
χs

 → v(p, s) = S(L)v(0, s) =

√
p0 +m√
2m

( σ·p
p0+m

χs
χs

)
. (3.25)

The spin sum for negative-energy states reads, for p = 0,∑
s

v(0, s)v̄(0, s) =
∑
s

v(0, s)vT (0, s)γ0 = −
(
O O
O I

)
=

1

2
(γ0 − 1), (3.26)

and for p arbitrary ∑
s

v(p, s)v̄(p, s) =
γµpµ −m

2m
. (3.27)

Utilizing both the u and v spin sums we can form (for every fixed p) a completeness relation on
the spinor space, ∑

s

(
u(p, s)ū(p, s)− v(p, s)v̄(p, s)

)
= I, (3.28)

where the u-part is the projector on the positive energy subspace, while the v-part (including
the minus sign) is the projector on the negative energy subspace.

To summarize, the general solution of the Dirac equation is given by the plane wave decom-
position

Ψ(x) =
∑
s=± 1

2

∫
d3p

(2π)3/2

√
m

ωp

(
Bp,su(p, s)e

−ip·x +D∗
p,sv(p, s)e

ip·x
)

, p0 = ωp =
√

p2 +m2,

(3.29)
where Bp,s and Dp,s are arbitrary complex constants (amplitudes of the corresponding plane
waves), and the numerical factor

√
m/(2π)3ωp has been included for later convenience. The

negative-energy part is related to antiparticles. Although Dirac proposed the existence of antipar-
ticles based on his theory of relativistic quantum mechanics, we shall postpone their discussion
until the quantum field theory part of the course.

Finally, let us mention that the polarisation spinors u and v satisfy the identities

ū(p, s)u(p, s′) = δss′ , v̄(p, s)v(p, s′) = −δss′ , ū(p, s)v(p, s′) = 0, (3.30)

which for p = 0 follow easily from Eqs. (3.18) and (3.25) (and for generic p by utilizing u(p, s) =
S(L)u(0, s), ū(p, s) = ū(0, s)S(L)−1, and likewise for v), and also the identities (derived in
Exercise 14)

u†(p, s)u(p, s′) =
ωp

m
δss′ , v†(p, s)v(p, s′) =

ωp

m
δss′ , u†(p, s)v(−p, s′) = 0, (3.31)

which will be used later in Chapter 8 when deriving the mode decomposition of the Hamiltonian
operator of the quantised Dirac field.
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3.3 Dirac bilinears
The γ-matrices and the Dirac spinors live in a rather abstract space. To relate them to the
real world (i.e., the spacetime) we construct out of them the so-called Dirac bilinears — certain
number-valued quadratic expressions in Ψ with spacetime indices.

The most common one is the Dirac current

Jµ(x) = Ψ̄(x)γµΨ(x). (3.32)

It transforms as a four-vector field under Lorentz transformations (recall Eqs. (3.7) and (3.13)):

J ′µ(x′) = Ψ̄′(x′)γµΨ′(x′) = Ψ̄(x)S(L)−1γµS(L)Ψ(x) = Ψ̄(x)Lµνγ
νΨ(x) = LµνJ

ν(x). (3.33)

Its zeroth component reads
J0(x) = Ψ†(x)Ψ(x) ≥ 0, (3.34)

and it gives, upon spatial integration, a positive-definite norm of the Dirac wave-functions.
The Dirac current Jµ is always conserved if Ψ(x) satisfies the Dirac equation (iγµ∂µ−m)Ψ = 0

(and hence Ψ̄(x) satisfies its conjugate version i∂µΨ̄γ
µ +mΨ̄ = 0):

∂µJ
µ = (∂µΨ̄)γµΨ+ Ψ̄γµ∂µΨ = imΨ̄Ψ + Ψ̄(−im)Ψ = 0. (3.35)

When the Dirac field gets coupled to the electromagnetic field, Jµ will become the electric current
density that features on the right-hand side of Maxwell’s equation (see Eq. (11.51)).

General tensor fields can be constructed analogously as Ψ̄(x)γµ . . . γνΨ(x). Indeed, the trans-
formation properties of such objects are

Ψ̄′(x′)γµ . . . γνΨ′(x′) = Ψ̄(x)S(L)−1γµS(L) . . . S(L)−1γνS(L)Ψ(x)

= Lµρ . . . L
ν
σΨ̄(x)γρ . . . γσΨ(x). (3.36)

(This also includes the scalar field Ψ̄(x)Ψ(x).)
Pseudotensors contain an extra factor det L in their transformation law. They exhibit their

“pseudo” character under parity LP , for which det LP = −1. In Section 4.2.2 we will show that
the spin representation of the parity transformation is S(LP ) = γ0. Hence,

S(LP )
−1γ5S(LP ) = γ0γ5γ0 = −γ5, whereas S(L)−1γ5S(L) = γ5 (3.37)

for all proper Lorentz transformations L, since γ5σµν = σµνγ5. Therefore, we can form pseu-
dotensors by including γ5 in the string γµ . . . γν in Eq. (3.36). For example, Ψ̄γ5Ψ is a pseu-
doscalar, Ψ̄γµγ5Ψ a pseudovector (or axial vector), etc.
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3.4 Exercises
Exercise 12. Boosting a particle from the rest. Consider four-momentum p

(0)
µ ≡ (m,0) (particle

at rest), and find the spin representation S(L) of the Lorentz boost that transforms the particle’s
three-momentum from 0 to an arbitrary given vector p.

Solution:

We will present two solution methods.

1. We need to boost the particle by velocity

v =
p

p0
, i.e., with rapidity ζ =

p

|p|
ζ, where tanh ζ = |v|. (3.38)

Observing that

(ζiγ0γi)2 = −ζiζjγiγj = −ζiζj 1
2
{γi, γj} = ζiζi = ζ2, (3.39)

we find

S(L) = exp

(
− i

2
ζiσ0i

)
= e

1
2 ζ

iγ0γi

= cosh
ζ

2
+
ζi

ζ
γ0γi sinh

ζ

2
= cosh

ζ

2
+
pi

|p|
γ0γi sinh

ζ

2
.

(3.40)
Finally, since cosh ζ = γ = p0

m , and employing identities for hyperbolic functions

cosh
ζ

2
=

√
cosh ζ + 1

2
=

√
p0 +m

2m
, sinh

ζ

2
=

√
cosh ζ − 1

2
=

√
p0 −m

2m
, (3.41)

which follow from (eζ/2±e−ζ/2)2 = eζ+e−ζ±2, we can cast the result in a more convenient
form

S(L) =

√
p0 +m

2m
+
pi

|p|
γ0γi

√
p0 −m

2m
=
p0 +m+ pi

|p|γ
0γi
√
p20 −m2

√
2m

√
p0 +m

=
γµpµγ

0 +m√
2m

√
p0 +m

.

(3.42)

2. Alternatively, we can employ the identity (2.41) for L−1:

S(L)γµS(L)−1 = (L−1)µνγ
ν = γνL µ

ν → S(L)γµp(0)µ S(L)−1 = γνL µ
ν p(0)µ = γνpν ,

(3.43)
where pµ = L ν

µ p
(0)
ν . Since L is a boost,

σ0i = iγ0γi → γ0S(L)−1 = γ0 exp

(
i

2
ζiσ0i

)
= exp

(
− i

2
ζiσ0i

)
γ0 = S(L)γ0, (3.44)

and so we have

S(L)γµp(0)µ S(L)−1 = S(L)γ0mS(L)−1 = S(L)2γ0m = γµpµ → S(L)2 =
1

m
γµpµγ

0.

(3.45)
Hence, we look for a square root of the matrix 1

mγ
µpµγ

0. This can be found by first
calculating the square

(γµpµγ
0)2 = γµpµγ

0γνpνγ
0 = −γµγνpνpµ+2g0νγµpµpνγ

0 = −pµpµ+2p0γ
µpµγ

0. (3.46)
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Rearranging the terms, noting that pµpµ = m2, and completing the square yields

(γµpµγ
0)2 ± 2mγµpµγ

0 +m2 = 2p0γ
µpµγ

0 ± 2mγµpµγ
0

1

m
γµpµγ

0 =
(γµpµγ

0 ±m)2

2m(p0 ±m)
. (3.47)

Hence
S(L) =

γµpµγ
0 +m√

2m
√
p0 +m

, (3.48)

where we have kept only the ‘+’ sign as the ‘−’ option does not reduce to 1 in the limit
p → 0.

Exercise 13. Gordon decomposition. Derive the (Gordon) identities

ū(p′)γµu(p) = ū(p′)

(
p′
µ
+ pµ

2m
+ iσµν

p′ν − pν
2m

)
u(p),

−v̄(p′)γµv(p) = v̄(p′)

(
p′
µ
+ pµ

2m
+ iσµν

p′ν − pν
2m

)
v(p), (3.49)

which hold for any polarization spinors u(p), u(p′), v(p), v(p′) satisfying the equations

(γµpµ −m)u(p) = 0 , (γµpµ +m)v(p) = 0. (3.50)

Solution:

The Dirac equation for u and for its conjugate, ū(p′)(γµp′µ −m) = 0, imply

ū(p′)(γνγµpµ −mγν)u(p) = 0,

ū(p′)(γµγνp′µ −mγν)u(p) = 0 (3.51)

Summing these two equations, and using the decomposition

γµγν =
1

2
{γµ, γν}+ 1

2
[γµ, γν ] = gµν − iσµν (3.52)

to cast
γνγµpµ + γµγνp′µ = pν − iσνµpµ + p′

ν − iσµνp′µ, (3.53)
we obtain

ū(p′)
(
p′
ν
+ pν + iσνµ(p′µ − pµ)

)
u(p) = ū(p′)(2mγν)u(p), (3.54)

which yields the first identity in Eq. (3.49).
In the same manner we obtain the second identity (with u replaced by v, and m replaced by

−m).

Exercise 14. Polarisation spinors’ identities. Show that:

1. u†(p, s)u(p, s′) =
ωp

m
δss′

2. v†(p, s)v(p, s′) =
ωp

m
δss′

3. u†(p, s)v(−p, s′) = 0. (3.55)

Solution:
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1. By Eq. (3.49) for µ = 0, and p′ = p,

u†(p, s)u(p, s′) = ū(p, s)γ0u(p, s′) = ū(p, s)
p0

m
u(p, s′) =

ωp

m
δss′ , (3.56)

where in the last step we used the orthogonality relations (3.30).

2. Same as case 1. (Note that the minus sign in the Gordon identity for v gets cancelled with
the minus in Eq. (3.30).)

3. We recall that for an appropriate boost L, u(p, s) = S(L)u(0, s) (see Eq. (3.22)), hence
v(−p, s′) = S(L)−1v(0, s′). Noting that, for a boost, γ0S(L)−1 = S(L)γ0, we find

u†(p, s)v(−p, s′) = ū(0, s)S(L)−1γ0S(L)−1v(0, s′) = ū(0, s)γ0v(0, s′) = u†(0, s)v(0, s′) = 0.
(3.57)

Exercise 15. Dirac equation in Weyl representation. Write the Dirac equation in the Weyl
representation of γ-matrices,

(iγµW∂µ −m)ΨW = 0, where ΨW =

(
ψL
ψR

)
, (3.58)

as a pair of equations for ψL and ψR. Consider the limit m → 0 corresponding to high energy
and momentum (fast particles).

Solution:

In the Weyl representation,

iγµW∂µ = i

(
O I
I O

)
∂0 + i

(
O σi

−σi O

)
∂i, (3.59)

so the Dirac equation reads

i

(
O I ∂0 + σi∂i

I ∂0 − σi∂i O

)(
ψL
ψR

)
= m

(
ψL
ψR

)
. (3.60)

For massless particles, or in the limit of negligible rest mass m, i.e., dominant kinetic energy
(fast particles), we obtain two independent equations

i (I ∂0 + σi∂i)︸ ︷︷ ︸
≡σµ∂µ

ψR = 0 , i (I ∂0 − σi∂i)︸ ︷︷ ︸
≡σ̄µ∂µ

ψL = 0, (3.61)

called the right-handed, and the left-handed Weyl equation, respectively.



Chapter 4

Dirac theory – further
developments

4.1 Dirac particle in electromagnetic field
In classical Hamiltonian mechanics, placing a free particle with mass m and charge q into an
external electromagnetic field consists in the replacement

H =
p2

2m
→ H − qA0 =

(p− qA)2

2m
. (4.1)

Here, the electromagnetic field is described by a four-potential Aµ(x) = (A0(x), Ai(x)), from
which one can calculate the Faraday tensor, and the electric and magnetic intensities:

Fµν = ∂µAν − ∂νAµ , Ei = −Ei = F 0i , Bi = −Bi = 1

2
εijkF

jk. (4.2)

In quantum theory, analogously, the four-momentum operator p̂µ = i∂µ is modified:

p̂µ → p̂µ − qAµ, i.e., ∂µ → Dµ ≡ ∂µ + iqAµ. (4.3)

Here Dµ is the covariant derivative, and the replacement ∂µ → Dµ is referred to as the minimal
coupling. The minimal coupling procedure generalizes beyond electromagnetism to so-called
non-Abelian gauge theories (or Yang-Mills theories) that play an important role in the Standard
model of particle physics.

The Dirac equation for a charged particle in external electromagnetic field is thus obtained
from the free Dirac equation by the replacement

(iγµ∂µ −m)Ψ(x) = 0 → (iγµDµ −m)Ψ(x) = 0. (4.4)

Another way of rewriting this is by multiplying γ0 on the left, and thus casting the minimally
coupled Dirac equation in the Schrödinger-like form

i∂tΨ = ĤDΨ, where ĤD = −iγ0γiDi + qA0(x) +mγ0 =

(
qA0 +m −iσiDi

−iσiDi qA0 −m

)
(4.5)

is the Dirac Hamiltonian, and we have used the Dirac representation of γ-matrices. This will
be our starting point in the investigation of the non-relativistic limit of the Dirac equation in
Section 4.1.1.

33
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In Section 4.1.2 we shall make use of the following consequence of Eq. (4.4). Applying the
operator iγµDµ +m we have

(iγµDµ +m)(iγνDν −m)Ψ = (−γµγνDµDν −m2)Ψ = 0, (4.6)

which can be cast, using the identities

γµγν =
1

2
{γµ, γν}+ 1

2
[γµ, γν ] = gµν − iσµν , (4.7)

and
[Dµ, Dν ] = [∂µ + iqAµ, ∂ν + iqAν ] = iq(∂µAν − ∂νAµ) = iqFµν , (4.8)

as (
DµDµ − iσµν

1

2
[Dµ, Dν ] +m2

)
Ψ(x) =

(
DµDµ +

q

2
σµνFµν +m2

)
Ψ(x) = 0. (4.9)

(We have used the antisymmetry of σµν to write σµνDµDν = 1
2σ

µν [Dµ, Dν ].) Without the
middle ‘spin’ term this would be a minimally coupled Klein-Gordon equation.

4.1.1 Non-relativistic limit of Dirac equation
As for the Klein-Gordon equation in Exercise 2, we pull the fast-oscillating rest-energy factor
e−imt out of the wave-function, and plug the following ansatz into Eq. (4.5):

Ψ(x) = e−imt
(
ϕ(x)
η(x)

)
: (i∂t +m)

(
ϕ
η

)
=

(
qA0 +m −iσiDi

−iσiDi qA0 −m

)(
ϕ
η

)
. (4.10)

Two coupled equations for the two-component wave-functions η and ϕ ensue:

i∂tϕ = qA0ϕ− iσiDiη,

i∂tη + 2mη = −iσiDiϕ+ qA0η. (4.11)

In the non-relativistic regime, and for weak electric fields, we can neglect in the second equation
the terms with i∂tη and qA0η against the dominant rest-energy term 2mη, and obtain 2mη =
−iσiDiϕ. Expressing η and plugging it into the first equation, we find, in this approximation,

η = − i

2m
σiDiϕ → i∂tϕ = − 1

2m
σiσjDiDjϕ+ qA0ϕ. (4.12)

Note that in full units we have η = − i~
2mcσ

iDiϕ, which is of order |v|
c , so in the non-relativistic

limit the Dirac spinor’s ‘lower component’ η is much smaller than the ‘upper component’ ϕ. This
is consistent with the fact that at rest (p = 0), the lower components of the polarization spinors
u vanish (recall Eq. (3.18)).

Meanwhile we calculate, taking into account Eqs. (4.8) and (4.2),

σiσjDiDjϕ = (δij + iεijkσ
k)DiDjϕ = DiDiϕ+

i

2
εijkσ

k iqFijϕ = DiDiϕ+ qσkBkϕ, (4.13)

and find the non-relativistic Pauli equation for a spin- 12 particle with charge q described by a
two-component wave-function ϕ(x, t),

i∂tϕ = − 1

2m
DiDiϕ− q

2m
σ ·B ϕ+ qA0ϕ. (4.14)
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The middle term corresponds to the magnetic interaction energy

−µ ·B, where the magnetic moment µ =
q

m

σ

2
=

2q

|e|
|e|
2m

S. (4.15)

Here S = σ
2 is the spin operator of a spin- 12 particle, |e| is the elementary charge, and the factor

g = 2q
|e| is the so-called g-factor. For an electron (q = −|e|) the Dirac theory therefore provides

the value ge = −2. It should be emphasized that this is a consequence of the theory, unlike
in non-relativistic quantum mechanics where ge = −2 was established so as to fit experimental
data.

In fact, current experimental value of the electron’s g-factor is ge
.
= −2.00232 [11, p. 16]. The

small correction, called the anomalous magnetic moment of electron, is understood in the realm
of quantum electrodynamics, where it was found by Schwinger that (in the first perturbative
order)

|ge| − 2

2
=

α

2π
, where α ≡ e2

4πε0~c
.
=

1

137
(4.16)

is the dimensionless fine structure constant.

4.1.2 Coulomb potential
Now we will investigate a Dirac particle, namely, an electron with charge −|e|, in a static electric
field of an atomic nucleus with proton number Z. The electromagnetic four-potential is of the
form Aµ(x) = (A0(r),0), where r ≡ |x|, and the potential energy reads

V (r) = −|e|A0(r) = −|e| Z|e|
4πε0

1

r
= −Zα

r
. (4.17)

Non-relativistic quantum mechanics provides the energy spectrum

E
(NR)
N = −mZ

2α2

2N2
, where N = n+ `+ 1 (n, ` = 0, 1, 2, . . .). (4.18)

From this we can estimate electron’s typical velocity in the N -th state, vN . Using the Feynman-
Hellmann relation we find

〈 p̂
2

2m
+ V̂ 〉N = E

(NR)
N

α ∂
∂α−→ 〈V̂ 〉N = 2E

(NR)
N , (4.19)

which allows us to express

〈p̂2〉N
2m

= −E(NR)
N =

mZ2α2

2N2
→ vN ≡

√
〈p̂2〉N
m2

=
Zα

N
. (4.20)

We can therefore expect that relativistic corrections to electron’s energy levels will be significant
especially for atoms with large proton number Z.

In order to find the energy spectrum within the Dirac theory it is convenient to start from
Eq. (4.9). To proceed we evaluate

DµDµ = (∂t − i|e|A0)(∂t − i|e|A0) + ∂i∂i =
(
∂t − i

Zα

r

)2
−∆,

σµνFµν = iγµγν(∂µAν − ∂νAµ) = 2iγiγ0∂iA0, (4.21)
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and for stationary states Ψ(x, t) = e−itEΨE(x) obtain[(
− iE − i

Zα

r

)2
−∆− |e|iγiγ0∂iA0 +m2

]
ΨE = 0

→
[
−E2 − 2ZαE

r
− Z2α2

r2
−∆− iγiγ0∂i

Zα

r
+m2

]
ΨE = 0

→
[
−∆− Z2α2

r2
+ iγiγ0

Zαxi

r3
− 2ZαE

r
− (E2 −m2)

]
ΨE = 0. (4.22)

Note that to arrive at this point we did not need to make use of any concrete representation of
γ-matrices. We are therefore free to adopt, for convenience, the Weyl representation, in which

γiγ0 =

(
O σi

−σi O

)(
O I
I O

)
=

(
σi O
O −σi

)
. (4.23)

Splitting the four-component Dirac wave-function into two parts, and casting the Laplace oper-
ator in spherical coordinates,

ΨE =

(
ϕE
ηE

)
, ∆ =

∂2

∂r2
+

2

r

∂

∂r
− L̂2

r2
, (4.24)

leads to the equation[
−
( ∂2
∂r2

+
2

r

∂

∂r

)
+

1

r2

(
L̂2 − Z2α2 + iZα

σixi

r

)
− 2ZαE

r
− (E2 −m2)

]
ϕE = 0, (4.25)

and a similar equation for ηE , with −i instead of +i. This difference however does not exhibit
itself on the level of energy eigenvalues as we argue in Exercise 17, to where we shall relegate the
rest of the calculation.

The resulting energy levels are

EN,j = m+ E
(NR)
N

(
1 +

Z2α2

N(j + 1
2 )

− 3

4

Z2α2

N2
+O(Z4α4)

)
, where j =

1

2
,
3

2
, . . . , N − 1

2
(4.26)

corresponds to the total (orbital plus spin) angular momentum operator Ĵ i = L̂i+ 1
2Σ

i. It is worth
to note that for the (spinless) Klein-Gordon equation, j would be replaced by the orbital quantum
number ` = 0, 1, . . . , N−1 [3, p. 73], resulting in a wrong prediction for the electron energy levels.
In Exercise 16 we show that for a spinning particle it is the total angular momentum Ĵ i that
commutes with the Dirac Hamiltonian ĤD (hence is conserved and corresponds to a quantum
number), whereas the orbital part L̂i itself does not.

Further corrections to formula (4.26) are due to the hyperfine structure, which takes into
account the spin of the atomic nucleus; and the Lamb shift, which takes into account the quantum
nature of the electromagnetic field.

4.2 Discrete transformations C, P and T

4.2.1 Charge conjugation
Let us write the Dirac equation in an external electromagnetic field in the form

[iγµ(∂µ + iqAµ)−m]Ψ = 0. (4.27)



CHAPTER 4. DIRAC THEORY – FURTHER DEVELOPMENTS 37

The sign of the electric charge q can be flipped by taking complex conjugation:

[−i(γµ)∗(∂µ − iqAµ)−m]Ψ∗ = 0. (4.28)

The matrices −(γµ)∗ form a representation of the Clifford algebra,

{−(γµ)∗,−(γν)∗} = {γµ, γν}∗ = (2gµν)∗ = 2gµν , (4.29)

and so there exists a similarity transformation U such that

−(γµ)∗ = U−1γµU. (4.30)

For definiteness let us assume Dirac representation for the γµ’s, in which γ0, γ1 and γ3 are real
matrices, whereas γ2 is purely imaginary. Hence we find

−γ0,1,3 = U−1γ0,1,3 U , γ2 = U−1γ2U → U = γ2 (4.31)

up to an arbitrary phase factor.
Equation (4.28) now takes the form

[iU−1γµU(∂µ − iqAµ)−m]Ψ∗ = U−1[iγµ(∂µ − iqAµ)−m]ΨC = 0, (4.32)

where
ΨC(x) = γ2Ψ∗(x) (4.33)

is the charge-conjugated Dirac wave-function. If Ψ is a wave-function of an electron then ΨC is
a wave-function of a particle with opposite charge but equal mass, namely, the positron.

Finally, let us note that it is common to define the charge conjugation operator C = γ2γ0,
so that ΨC = Cγ0Ψ∗.

4.2.2 Parity
Space reflection, or parity,

x′ = (x0,−x) , LP = diag(1,−1,−1,−1) (4.34)

is an improper Lorentz transformation (det LP = −1). The spin representation of this transfor-
mation is determined from the requirement S(LP )−1γµS(LP ) = (LP )

µ
νγ

ν , i.e.,

S(LP )
−1γ0S(LP ) = γ0 and S(LP )

−1γiS(LP ) = −γi ⇒ S(LP ) = γ0 (4.35)

up to an undetermined phase factor.
It is easy to check that if (iγµ∂µ −m)Ψ(x) = 0, the parity-transformed wave-function

ΨP (x
0,−x) = γ0Ψ(x) (4.36)

satisfies the Dirac equation in the new coordinates,

(iγµ∂′µ −m)ΨP (x
′) = (iγ0∂0 − iγi∂i −m)γ0Ψ(x) = γ0(iγ0∂0 + iγi∂i −m)Ψ(x) = 0. (4.37)

It is worth to note that in the Weyl representation, parity interchanges left- and right-handed
components of the Dirac spinor:

γ0W =

(
O I
I O

)
→ S(LP )

(
ψL
ψR

)
=

(
ψR
ψL

)
. (4.38)
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4.2.3 Time reversal
Time reversal

x′ = (−x0,x) , LT = diag(−1, 1, 1, 1) (4.39)

is an improper non-orthochronous Lorentz transformation. From quantum mechanics we know
that it is implemented by an antiunitary operator. Hence we look for a transformed wave-function
in the form

ΨT (−x0,x) = UΨ∗(x), (4.40)

so that for appropriate U, (iγµ∂µ −m)Ψ(x) = 0 implies

(iγµ∂′µ −m)ΨT (x
′) = (−iγ0∂0 + iγ1∂1 + iγ2∂2 + iγ3∂3 −m)UΨ∗(x) = 0. (4.41)

Complex conjugating the original Dirac equation gives, assuming the Dirac representation,

(−iγ0∂0 − iγ1∂1 + iγ2∂2 − iγ3∂3 −m)Ψ∗(x) = 0. (4.42)

Clearly, we need to meet the conditions

γ0,2U = Uγ0,2 , γ1,3U = −Uγ1,3, (4.43)

which is achieved with
U = γ1γ3 (4.44)

(up to an arbitrary phase).
The wave-function after time reversal therefore reads

ΨT (−x0,x) = γ1γ3Ψ∗(x). (4.45)

4.2.4 CPT transformation
What is the wave-function after successive application of C, P and T transformations? Combin-
ing Eqs. (4.33), (4.36) and (4.45) we find

((ΨC)P )T (x) = γ1γ3
(
γ0γ2Ψ∗(−x)

)∗
= −iγ5Ψ(−x). (4.46)

The CPT theorem states that any local Lorentz invariant quantum field theory is necessarily
invariant under the combined CPT transformation. However, experiments show that the indi-
vidual transformations are not always symmetries of Nature. For example, parity is violated in
the Standard model of electroweak interactions.

4.3 Helicity and chirality
The free-particle Dirac Hamiltonian

ĤD = γ0γip̂i +mγ0 (4.47)

does not commute with the spin operators 1
2Σ

i (see Eq. (4.63)). However, it does commute, as
shown in Exercise 16, with their projection to the direction of motion — the helicity

ĥ ≡ Σ

2
· p̂

|p̂|
. (4.48)
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Since commuting with the Hamiltonian, and thus conserved during time evolution, helicity is
a convenient quantity to characterise the spin state of the Dirac particle. However, it is not a
Lorentz invariant concept due to its dependence on the spatial momentum p.

A simple calculation reveals that

ĥ2 =
1

4
I⊗ (σ · p̂)2

|p̂|2
=

1

4
, (4.49)

therefore the eigenvalues of ĥ are ± 1
2 (as must be the case for a spin projection). States with

helicity − 1
2 are referred to as left-handed, and those with + 1

2 as right-handed.
Chirality is another notion of ‘handedness’. It is represented by the operator γ5, and since

(γ5)2 = 1, it has eigenvalues −1, for left-chiral states, or +1, for right-chiral states. (One often
uses the terms ‘left-handed’ and ‘right-handed’, which however increases the risk of confusing
chirality with helicity.) Unlike helicity, chirality is not a constant of motion,

[γ5, ĤD] = [γ5, γ0γip̂i +mγ0] = 2mγ5γ0 6= 0, (4.50)

unless m = 0. On the other hand, chirality is a concept invariant under proper Lorentz transfor-
mations, S(L)γ5S(L)−1 = γ5, and gets flipped by parity, S(LP )γ5S(LP )−1 = −γ5 (recall that
S(LP ) = γ0).

The chiral projectors 1
2 (1± γ5), satisfying(

1± γ5

2

)2

=
1± γ5

2
,

1 + γ5

2
+

1− γ5

2
= 1 ,

1 + γ5

2

1− γ5

2
= 0, (4.51)

can be used to decompose any state Ψ to its left-chiral (the “−” sign) and right-chiral (the “+”
sign) components:

γ5
(
1± γ5

2
Ψ

)
= ±

(
1± γ5

2
Ψ

)
. (4.52)

(Similarly, since (2ĥ)2 = 1, we could form helicity projectors 1
2 (1 ± 2ĥ).) In the Weyl represen-

tation, which is also called ‘chiral’ as it is well-suited for discussing chirality, we have

γ5W =

(
−I O
O I

)
→ 1− γ5W

2
=

(
I O
O O

)
,

1 + γ5W
2

=

(
O O
O I

)
. (4.53)

Therefore, left-chiral bispinors are of the form
(
ψL
0

)
, whereas right-handed bispinors are of the

form
(

0
ψR

)
.

As a final remark, consider a plane-wave solution of the massless Dirac equation (pµpµ = 0),
with polarization spinor u(p) satisfying

γµpµu(p) = 0 → u(p) =
γ0γipi

|p|
u(p) (4.54)

Multiplying on the left by the chirality operator γ5, and observing that

γ5γ0γi = −iγ1γ2γ3γi = i

2
εijkγ

jγk =
1

2
εijkσ

jk = Σi, (4.55)

we find
γ5u(p) =

Σipi

|p|
u(p) = 2hu(p) (4.56)

That is, for massless particles (or in the ultra-relativistic limit m → 0), helicity and chirality
coincide.
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4.4 Exercises
Exercise 16. Dirac Hamiltonian commutators.

Show that for Aµ(x) = (A0(r),0) (particle in central electric field) the Dirac Hamiltonian
ĤD commutes with the total angular momentum

Ĵ i = L̂i +
Σi

2
, where L̂i = εijkx

j p̂k, Σi =

(
σi O
O σi

)
. (4.57)

If in addition A0 = 0 (free particle), show that ĤD commutes with the helicity operator

ĥ =
Σ

2
· p̂

|p̂|
. (4.58)

Solution:

According to Eq. (4.5) the Dirac Hamiltonian reads

ĤD = −iγ0γi∂i + qA0(r) +mγ0 = γ0γip̂i + V (r) +mγ0. (4.59)

Observe that expanding the commutator [Ĵ i, ĤD] into six terms, two of them, namely, [L̂i, γ0]
and [Σi, V (r)] vanish trivially, [Σi, γ0] vanishes since Σi is a linear combination of products of
two spatial γ-matrices, and

[L̂i, V (r)] = εijk[x
j p̂k, V (r)] = −iεijkxj [∂k, V (r)] = −iεijkxj

xk

r
V ′(r) = 0. (4.60)

We are thus left with the orbital angular momentum part

[L̂i, ĤD] = [L̂i, γ0γj p̂j ] = γ0γj [L̂i, p̂j ], (4.61)

where
[L̂i, p̂j ] = εik`[x

kp̂`, p̂j ] = εik`[x
k, p̂j ] p̂` = iεij` p̂

`, (4.62)

and the spin angular momentum part

1

2
[Σi, ĤD] =

1

2
[Σi, γ0γj p̂j ] =

1

2
γ0[Σi, γj ] p̂j , (4.63)

where

[Σi, γj ] = [I⊗ σi, iσ2 ⊗ σj ] = iσ2 ⊗ [σi, σj ] = iσ2 ⊗ (2iεijkσ
k) = 2iεijkγ

k. (4.64)

Thus, in total,

[Ĵ i, ĤD] = [L̂i, ĤD] +
1

2
[Σi, ĤD] = iγ0γjεij` p̂

` + iγ0γkεijk p̂
j = 0. (4.65)

For A0 = 0, p̂i commutes with ĤD and so we find

[ĥ, ĤD] =
p̂i

|p̂|
1

2
[Σi, ĤD] =

p̂i

|p̂|
iγ0γkεijk p̂

j = 0. (4.66)
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Exercise 17. Energy levels in Coulomb potential. Starting from equation[
−
( ∂2
∂r2

+
2

r

∂

∂r

)
+

1

r2

(
L̂2 − Z2α2 + iZα

σixi

r

)
− 2ZαE

r
− (E2 −m2)

]
ϕE = 0, (4.67)

determine the energy levels of a Dirac electron in the Coulomb potential.

Solution:

Our strategy will be to use of the knowledge of non-relativistic energy spectrum

E
(NR)
N = −mZ

2α2

2N2
, N = n+ `+ 1 (n, ` = 0, 1, 2, . . .) (4.68)

that follows from the time-independent Schrödinger equation(
− 1

2m
∆+V (r)

)
ψE = EψE →

[
− 1

2m

( ∂2
∂r2

+
2

r

∂

∂r

)
+
`(`+ 1)

2mr2
− Zα

r
− E

(NR)
N

]
ψN,` = 0.

(4.69)
We will break the calculation into several steps:

1. Denote by M̂ the operator that multiplies the factor 1
r2 in Eq. (4.67),

M̂ ≡ L̂2 − Z2α2 + iZα
σixi

r
. (4.70)

Since the total angular momentum operator Ĵ i = L̂i + 1
2σ

i commutes with σixi,

[σixi, L̂j + 1
2σ

j ] = σi[xi, εjk`x
kp̂`] +

1

2
[σi, σj ]xi = iεjk`σ

ixkδi` + iεijkσ
kxi = 0, (4.71)

the same holds for M̂ : [Ĵ i, M̂ ] = 0. (We also used the fact that 1
r commutes with L̂i due

to (4.60).)
In the subspace where Ĵ2 = j(j + 1) (j = 1

2 ,
3
2 , . . .), and Ĵ3 = m (−j ≤ m ≤ j), the orbital

quantum number ` (such that L̂2 = `(` + 1)) can take two values `± = j ± 1
2 . We denote

the corresponding eigenstates by
∣∣j m,± 1

2

〉
, and for fixed j and m aim to cast M̂ in this

basis as a 2 by 2 matrix M.
To this end we recall that eigenstates of L̂2 (the spherical functions) have parity (−1)`,
and since the operator σixi

r changes parity (and is Hermitian), we have

σixi

r
=

(
0 z
z∗ 0

)
for some z ∈ C. (4.72)

Moreover, (
σixi

r

)2

=
σiσjxixj

r2
=
xixi

r2
= 1 → σixi

r
=

(
0 eiθ

e−iθ 0

)
(4.73)

for some phase θ, which will not influence our results. (This phase factor also absorbs the
extra minus sign in the equation for the lower component ηE — see Eq. (4.25).)
Hence, since `±(`± + 1) = (j + 1

2 )
2 ± (j + 1

2 ), we find

M =

(
(j + 1

2 )
2 − Z2α2 + j + 1

2 iZαeiθ

iZαe−iθ (j + 1
2 )

2 − Z2α2 − (j + 1
2 )

)
. (4.74)
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2. For a 2 by 2 matrix M, the characteristic polynomial, and also the eigenvalues, can be cast
in terms of the determinant and the trace:

(λ− λ+)(λ− λ−) = λ2 − (TrM)λ+ detM = 0 → λ± =
TrM

2
±

√(
TrM

2

)2

− detM.

(4.75)
Since

TrM

2
= (j + 1

2 )
2 − Z2α2 , detM =

(
(j + 1

2 )
2 − Z2α2

)2
− (j + 1

2 )
2 + Z2α2, (4.76)

we find explicitly

λ± = κ±(κ± + 1), where κ+ =
√
(j + 1

2 )
2 − Z2α2, κ− = κ+ − 1. (4.77)

Expansion in small Zα yields

κ+ =
(
j +

1

2

)√
1− Z2α2

(j + 1
2 )

2
= j +

1

2
− δj , where δj =

Z2α2

2j + 1
+O(Z4α4). (4.78)

3. In the eigenbasis corresponding to λ± equation (4.67) reads[
− 1

2m

( ∂2
∂r2

+
2

r

∂

∂r

)
+
κ±(κ± + 1)

2mr2
− Zα

r

E

m
− E2 −m2

2m

]
ϕ
(±)
E = 0. (4.79)

Comparison with the Schrödinger equation (4.69) now yields

E2 −m2

2m
= −mZ

2α2

2N ′2
E2

m2
→ EN,j =

m√
1 + Z2α2

N ′2

, where N ′ = n+κ±+1 = N−δj ,

(4.80)
and N = n + `± + 1 is a positive integer. (We have neglected the negative part of the
energy spectrum.)

4. Finally, we perform an expansion in (Zα)2 with a help of the formulas

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 +O(x3), (4.81)

and
1

N ′2
=

1

(N − δj)2
=

1

N2

(
1 +

Z2α2

N(j + 1
2 )

+O(Z4α4)

)
. (4.82)

The resulting energy levels read

EN,j = m

(
1− Z2α2

2N ′2
+

3

8

Z4α4

N ′4
+O(Z6α6)

)
= m

(
1− Z2α2

2N2
− Z4α4

2N3(j + 1
2 )

+
3

8

Z4α4

N4
+O(Z6α6)

)
= m − mZ2α2

2N2︸ ︷︷ ︸
E

(NR)
N

(
1 +

Z2α2

N(j + 1
2 )

− 3

4

Z2α2

N2
+O(Z4α4)

)
. (4.83)



CHAPTER 4. DIRAC THEORY – FURTHER DEVELOPMENTS 43

Exercise 18. Charge conjugation of a helicity eigenstate. Consider a positive-energy plane-wave
solution of the Dirac equation,

Ψ(x) = u(p)e−ip·x, where u(p) =

√
p0 +m√
2m

(
χ

σ·p
p0+m

χ

)
. (4.84)

1. Determine the spin state χ so that the helicity of Ψ is + 1
2 .

2. Find the charge-conjugated wave-function ΨC(x).

3. What are energy, momentum, and helicity of ΨC(x)?

Solution:

1. Application of the helicity operator ĥ = Σ
2 · p̂

|p̂| on Ψ yields

ĥΨ =
1

2

(
σ · n O
O σ · n

)
Ψ =

1

2

√
p0 +m√
2m

(
(σ · n)χ

σ·p
p0+m

(σ · n)χ

)
e−ip·x, where n ≡ p̂

|p̂|
.

(4.85)
We are therefore looking for χp+ ∈ C2 that satisfies (σ · n)χp+ = χp+. Since (σ · n)2 =
|n|2 = 1, the matrices

1 + σ · n
2

and 1− σ · n
2

(4.86)

are projectors on the eigenspaces of σ · n corresponding to the eigenvalues +1 and −1,
respectively. Projecting an arbitrary reference spinor (for instance ( 10 )) onto the +1

eigenspace, and fixing the normalization so that χ†
p+χp+ = 1, we obtain

χp+ ∝ 1 + σ · n
2

(
1
0

)
=

1

2

(
1 + n3

n1 + in2

)
→ χp+ =

1√
2(1 + n3)

(
1 + n3

n1 + in2

)
. (4.87)

(Note that this formula is singular for n3 = −1, so in that case a different choice of the
reference spinor, for instance ( 01 ), has to be made.)

2. The charge conjugation acts on Ψ as ΨC(x) = γ2Ψ∗(x). Explicitly,

ΨC(x) =

√
p0 +m√
2m

(
O σ2

−σ2 O

)(
χ∗
p+

σ∗·p
p0+m

χ∗
p+

)
eip·x =

√
p0 +m√
2m

(
− σ·p
p0+m

σ2χ∗
p+

−σ2χ∗
p+

)
eip·x,

(4.88)
where we have made use of the fact that

σ2(σ∗ · p) = σ2(σ1p1 − σ2p2 + σ3p3) = −(σ · p)σ2. (4.89)

By the same token, we find

σ2χ∗
p+ = σ2 1 + σ∗ · n√

2(1 + n3)

(
1
0

)
=

1− σ · n√
2(1 + n3)

σ2

(
1
0

)
=

1− σ · n√
2(1 + n3)

(
0
i

)
= iχp−. (4.90)

In total we have
ΨC(x) = (−i)

√
p0 +m√
2m

( σ·p
p0+m

χp−
χp−

)
eip·x, (4.91)

which (up to an inessential phase factor −i) has the form of a negative-energy plane-wave
solution.
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3. To determine the energy and momentum of the charge-conjugated wave-function we calcu-
late

p̂0ΨC = i∂tΨC = −p0ΨC and p̂iΨC = i∂iΨC = −piΨC , (4.92)

that is, ΨC has indeed negative energy and momentum −p. The helicity reads

ĥΨC =
Σ

2
· (−p)

|p|
ΨC =

1

2
ΨC . (4.93)

Charge conjugation flips both the momentum and the spin state of the particle. The
helicity is therefore preserved.
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Chapter 5

Classical field theory

5.1 Systems of coupled oscillators
5.1.1 One-dimensional harmonic oscillator
A one-dimensional harmonic oscillator with (angular) frequency ω and mass M is described by
the following Lagrangian or Hamiltonian:

L(q, q̇) =
M

2
q̇2 − 1

2
Mω2q2 → p =Mq̇ , H(q, p) =

p2

2M
+

1

2
Mω2q2. (5.1)

The Hamiltonian can be factorised as

H(z, z∗) = ωz∗z, where z =

√
Mω

2
q +

ip√
2Mω

, (5.2)

and the canonical Poisson brackets {q, p}PB = 1 and {q, q}PB = {p, p}PB = 0 imply

{z, z∗}PB = −i and {z, z}PB = {z∗, z∗}PB = 0. (5.3)

(The subscript PB has been added to avoid confusion with an anti-commutator.) The new
variables z and z∗ are complex conjugate of one another, but they are to be treated as independent
linear combinations of the original variables q and p. Canonical equations of motion in the new
variables follow easily using the Leibniz rule for Poisson brackets,

ż = {z,H}PB = ωz∗{z, z}PB + ω{z, z∗}PBz = −iωz, (5.4)

with the solution for arbitrary initial condition z(0) = A ∈ C given by

z(t) = Ae−iωt → q(t) =

√
2

Mω
Re z(t) =

z(t) + z∗(t)√
2Mω

=
1√
2Mω

(
Ae−iωt +A∗eiωt

)
. (5.5)

5.1.2 Normal modes
Let us now consider a system of N coupled degrees of freedom qn of equal masses M described
by the quadratic Lagrangian

L(qn, q̇n) =
∑
n

M

2
q̇2n − 1

2

∑
n,n′

Unn′qnqn′ =
M

2
~̇q T ~̇q − 1

2
~q TU ~q, (5.6)
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where ~q = (qn) ∈ RN is the vector of displacements from equilibrium positions, and U = (Unn′)
is an N × N real symmetric positive-definite matrix — the ‘potential energy matrix’. In the
Hamiltonian formulation we have

pn =
∂L

∂q̇n
=Mq̇n → H(qn, pn) =

∑
n

p2n
2M

+
1

2

∑
n,n′

Unn′qnqn′ . (5.7)

From the treatment of small oscillations of classical systems [9, Ch. 1.7] we know that it is
convenient to diagonalise the matrix U,

U = VMΩ2 VT , where Ω = diag(ω1, . . . , ωN ), ω1 ≤ . . . ≤ ωN , and VTV = VVT = I,
(5.8)

and perform the transformation to normal coordinates ~η = (ηk), i.e., express

~q(t) = V ~η(t) =
N∑
k=1

~vkηk(t), where V = (~v1, . . . , ~vN ). (5.9)

Here the vectors ~vk form an orthonormal basis of the configuration space RN :

orthonormality : (VTV)kk′ = ~v Tk ~vk′ = δkk′

completeness : VVT =
∑
k

~vk~v
T
k = I. (5.10)

They are the normal modes of the oscillating system (collective degrees of freedom).
The Lagrangian, when expressed in the normal coordinates, gets decoupled,

L(ηk, η̇k) =
M

2
~̇η TVTV~̇η − 1

2
~η TVTUV ~η =

∑
k

(
M

2
η̇2k −

M

2
ω2
kη

2
k

)
→ η̈k + ω2

kηk = 0 (∀k).

(5.11)
It describes a system of N independent harmonic oscillators with coordinates ηk, and frequencies
ωk.

In the Hamiltonian formulation, the canonical momenta corresponding to the normal coordi-
nates read ρk =Mη̇k, and the Hamiltonian is

H(ηk, ρk) =
∑
k

(
ρ2k
2M

+
M

2
ω2
kη

2
k

)
→ H(zk, z

∗
k) =

∑
k

ωkz
∗
kzk, zk =

√
Mωk
2

ηk+
iρk√
2Mωk

.

(5.12)
The Poisson brackets between the z-variables, and the ensuing equations of motion read

{zk, z∗k′}PB = −iδkk′ , {zk, zk′}PB = {z∗k, z∗k′}PB = 0 → żk = {zk,H}PB = −iωkzk.
(5.13)

Equation (5.5) then readily provides the trajectories zk(t) and also ηk(t), which can be superposed
via Eq. (5.9) to yield a general solution for the oscillating system

~q(t) =
∑
k

~vk√
2Mωk

(
Ake

−iωkt +A∗
ke
iωkt
)
. (5.14)

Although the individual masses (the degrees of freedom qn) influence each other as they are
coupled by springs, the normal modes, which we have been able to find owing to the quadratic
nature of Lagrangian (5.6), are independent — their coordinates ηk evolve independently of each
other.
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5.1.3 Linear chain and string
Let us assume that the masses M are arranged in a linear chain, and connected by springs
characterized by a spring constant κ. The Lagrangian then reads

L(qn, q̇n) =
∑
n

M

2
q̇2n −

∑
n

κ

2
(qn+1 − qn)

2. (5.15)

(We envisage an infinite chain without specific boundary conditions.)
We wish to pass to the continuum limit, where the equilibrium interparticle distance a→ 0.

Introducing a function φ(x, t), x ∈ R, we may write

φ(na, t) = qn(t) → L =
∑
n

a
M

2a
φ̇(na)2 −

∑
n

a
κa

2

(
φ(na+ a)− φ(na)

a

)2

. (5.16)

Identifying a = dx, na = x, Ma = ρ (linear density), and κa = T (string tension), the Lagrangian
becomes

L =

∫
dxL , with L =

ρ

2
(∂tφ)

2 − T

2
(∂xφ)

2. (5.17)

In the continuum limit, the spring coupling is captured by the spatial derivative term.
The corresponding field-theoretical Euler-Lagrange equation of motion

∂t
∂L

∂(∂tφ)
+ ∂x

∂L

∂(∂xφ)
− ∂L

∂φ
= ρ

∂2φ

∂t2
− T

∂2φ

∂x2
= 0 (5.18)

is the wave equation of a one-dimensional (infinite) string. This can be further rewritten as(
1

c2s

∂2

∂t2
− ∂2

∂x2

)
φ(x, t) = 0, where cs ≡

√
T

ρ
(5.19)

is the speed of sound, i.e., the speed at which waves on the string propagate.
It is interesting to note that the wave equation is invariant under “Lorentz” boosts, with cs

playing the role of the speed of light in special relativity. We arrive at a “relativistic” equation
starting from a non-relativistic mechanical system of oscillating masses.

5.2 Functional derivatives
Functionals generalize the notion of functions of several variables to the case of (continuously)
infinitely many independent variables:

f : u = (u1, . . . , un) 7→ f(u)  F : φ 7→ F [φ]. (5.20)

The infinitely many degrees of freedom of the functional F are collected in a function φ(x),
defined on a certain domain in RD, and satisfying certain smoothness and boundary conditions.

Let us write the increment of a function f when moving from a point u in the direction h =
(h1, . . . , hn), and analogously the increment of a functional F when varying φ in the “direction”
in the function space specified by a function η:

f(u+ εh)− f(u) ≈ ε
∑
i

∂f(u)

∂ui
hi  F [φ+ εη]− F [φ] ≈ ε

∫
dx

δF [φ]

δφ(x)
η(x). (5.21)
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In more technical terms, we are using the Riesz lemma to express the derivative (which is at each
point a linear functional of the direction) as a scalar product of the direction with the gradient
∂f
∂ui

, or the “functional gradient” δF
δφ(x) , respectively.

Without further aspiration at mathematical rigour, we will introduce functional (or varia-
tional) derivatives by analogy with partial derivatives of multivariate functions. Partial derivative
with respect to the jth independent variable is obtained by setting hi = δij ; similarly, the func-
tional derivative at point y is obtained by setting η(x) = δ(x− y):

∂f(u)

∂uj
= lim
ε→0

f(u1, . . . , uj + ε, . . . , un)− f(u)

ε
 

δF [φ]

δφ(y)
= lim
ε→0

F [φ(x) + εδ(x− y)]− F [φ(x)]

ε
.

(5.22)
In this expression x is a ‘silent’ variable that enumerates the degrees of freedom of a function φ,
much like an index i can be used to enumerate the components ui of u. The Dirac δ-function
that features in the argument of F can be understood as a nascent δ-function, i.e., a regularizing
sequence of ordinary functions.

As a basic example, let us consider, for a fixed x, the functional Fx[φ] = φ(x), and calculate

δFx[φ]

δφ(y)
= lim
ε→0

φ(x) + εδ(x− y)− φ(x)

ε
= δ(x− y), that is δφ(x)

δφ(y)
= δ(x− y) (5.23)

(which is to be compared with ∂ui

∂uj
= δij). Having this simple formula in mind in fact allows one

to calculate plenty of results, since functional derivatives exhibit a number of properties, which
are unsurprisingly analogous to the properties of partial derivatives.

1. Linearity:

δ

δφ(y)

(
α(x)F [φ] +G[φ]

)
= α(x)

δF [φ]

δφ(y)
+
δG[φ]

δφ(y)
. (5.24)

For example, we can easily calculate

δ

δφ(y)

∫
dxφ(x)ψ(x) =

∫
dx δ(x− y)ψ(x) = ψ(y) ,

δ

δφ(y)
∂xφ(x) = ∂xδ(x− y). (5.25)

2. Product (or Leibniz) rule:

δ

δφ(y)

(
F [φ]G[φ]

)
=
δF [φ]

δφ(y)
G[φ] + F [φ]

δG[φ]

δφ(y)
. (5.26)

3. There are various ways to compose functions and functionals and hence various chain rules.
We mention

δ

δφ(y)
g(F [φ]) = g′(F [φ])

δF [φ]

δφ(y)
(5.27)

(provided F takes values in the domain of the function g).
Then, for example,

δ

δφ(y)

∫
dx g(φ(x)) =

∫
dx g′(φ(x))δ(x− y) = g′(φ(y)). (5.28)

An important generalisation of this result to integral functionals that depend also on deriva-
tives of φ, e.g., action functionals, is provided in Exercise 20.
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4. Functional Taylor series is analogous to the Taylor series of a multivariate function:

f(u+ h) = f(u) +
∑
i

∂f(u)

∂ui
hi +

1

2!

∑
ij

∂2f(u)

∂ui∂uj
hihj + . . .

 F [φ+ η] = F [φ] +

∫
dx

δF [φ]

δφ(x)
η(x) +

1

2!

∫
dxdy

δ2F [φ]

δφ(x)δφ(y)
η(x)η(y) + . . . . (5.29)

5.3 Lagrangian and Hamiltonian formalism in field theory
We move from analytical mechanics of (possibly many) discrete degrees of freedom qn(t), where
n = 1, . . . , N , to a field theory of (continuously) infinitely many degrees of freedom φ(x, t), where
x are points in R3. In this section we will consider, for simplicity, a one-component field φ, i.e.,
one degree of freedom per spatial point x; generalisation to several components φr (forming the
so-called ‘internal space’ of the theory) is straightforward when needed.

In Lagrangian formalism, the Lagrangian of a discrete system is replaced by a field La-
grangian,

L(qn, q̇n)  L[φ(x), φ̇(x)], (5.30)

which is a functional of two fields: the ‘displacement’ field φ(x), and the ‘velocity’ field φ̇(x).
Time evolution adds time dependence of the fields, φ(x, t), φ̇(x, t), fixing the velocity field as the
time derivative of the displacement field. Dynamics is governed by the action,

S[qn(t)] =

∫ t2

t1

dtL(qn(t), q̇n(t))  S[φ(x, t)] =

∫ t2

t1

dtL[φ(x, t), φ̇(x, t)], (5.31)

with the ensuing Euler-Lagrange equations of motion

δS

δqn(t)
=

∂L

∂qn
− d

dt

∂L

∂q̇n
= 0  

δS

δφ(x, t)
=

δL

δφ(x)
− d

dt

δL

δφ̇(x)
= 0. (5.32)

For local field theories, the Lagrangian and the action assume the form

L[φ(x), φ̇(x)] =

∫
d3xL (φ(x),∇φ(x), φ̇(x)) , S[φ(x)] =

∫
d4xL (φ(x), ∂µφ(x)), (5.33)

where the function L is referred to as the Lagrangian density. The Lagrangian L is therefore
a “continuous sum” of terms, each one depending of the value of φ at a given point x and its
infinitesimal neighbourhood (via the derivatives).

Apart from Section 6.2.3 (and Exercise 25), where we briefly discuss the field-theoretic de-
scription of non-relativistic interacting many-particle systems, we will deal exclusively with local
field theories (and often use the term ‘Lagrangian’ in place of ‘Lagrangian density’ for brevity).
Then, by Exercise 20 with D = 3, the equations of motion (5.32) become

∂L

∂φ
− ∂i

∂L

∂(∂iφ)
− d

dt

∂L

∂φ̇
=
∂L

∂φ
− ∂µ

∂L

∂(∂µφ)
= 0. (5.34)

The same result can be obtained directly by equating to zero the functional derivative δS
δφ(x) of

the action in Eq. (5.33) with a help of Exercise 20 (the case D = 4). For later reference we quote
the resulting field-theoretic Euler-Lagrange equations also for a multicomponent field (φr):

∂L

∂φr
− ∂µ

∂L

∂(∂µφr)
= 0 (∀r). (5.35)
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To provide some examples, we list Lagrangian densities that lead to the Klein-Gordon (see
Exercise 21), the Dirac (Exercise 22), and the Maxwell equations (Eq. (10.2)), respectively:

Klein-Gordon field: L (φ, ∂µφ) =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2,

Dirac field: L (Ψ, Ψ̄, ∂µΨ, ∂µΨ̄) = Ψ̄(iγµ∂µ −m)Ψ,

Electromagnetic field: L (Aµ, ∂µAν) = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ. (5.36)

The passage from the Lagrangian to the Hamiltonian formalism starts by defining the canon-
ical momenta pn associated with the degrees of freedom qn, or, in continuous field theory, the
momentum field π(x) associated with the displacement field φ(x):

pn =
∂L

∂q̇n
(qn, q̇n)  π(x) =

δL

δφ̇(x)
[φ(x), φ̇(x)] =

∂L

∂φ̇
(φ(x),∇φ(x), φ̇(x)). (5.37)

For a discrete system the Hamiltonian reads

H(qn, pn) =
∑
n

pnq̇n − L(qn, q̇n), where q̇n = q̇n(qm, pm); (5.38)

for a field system, analogously,

H[φ(x), π(x)] =

∫
d3x

(
π(x)φ̇(x)− L

)
=

∫
d3xH , (5.39)

where we have defined the Hamiltonian density

H (φ,∇φ, π) = π φ̇− L (φ,∇φ, φ̇) = ∂L

∂(∂0φ)
∂0φ− L . (5.40)

(We will later identify this quantity as the component µ = ν = 0 of the canonical energy
momentum tensor Tµν — see Eq. (5.60).)

The field-theoretic Poisson bracket of two functionals F [φ, π] and G[φ, π] is defined as

{F,G}PB =

∫
d3x

(
δF

δφ(x)

δG

δπ(x)
− δG

δφ(x)

δF

δπ(x)

)
= −{G,F}PB . (5.41)

For simple functionals of the form φ(x) and π(x) we find, in particular, the canonical Poisson
brackets

{φ(x), π(y)}PB =

∫
d3x′

(
δφ(x)

δφ(x′)

δπ(y)

δπ(x′)
− δπ(y)

δφ(x′)

δφ(x)

δπ(x′)

)
=

∫
d3x′δ(x−x′)δ(y−x′) = δ(x−y),

(5.42)
and

{φ(x), φ(y)}PB = {π(x), π(y)}PB = 0, (5.43)
which is a continuum version of the canonical relations {qn, pn′}PB = δnn′ , and {qn, qn′}PB =
{pn, pn′}PB = 0.

Finally, let us observe that Hamilton’s canonical equations of motion for the fields φ(x, t)
and π(x, t) can be expressed with a help of Poisson brackets as (all fields taken at point x and
time t)

∂tφ = {φ,H}PB =

∫
d3x′

δφ(x)

δφ(x′)

δH

δπ(x′)
=

δH

δπ(x)
=
∂H

∂π
,

∂tπ = {π,H}PB = −
∫
d3x′

δH

δφ(x′)

δπ(x)

δπ(x′)
= − δH

δφ(x)
= −∂H

∂φ
+ ∂i

∂H

∂(∂iφ)
. (5.44)
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5.4 Symmetries and conservation laws
Noether’s theorem provides a link between symmetry properties of a physical theory and con-
servation laws. Here a ‘symmetry’ explicitly means an invariance of the action under certain
transformation of spacetime coordinates and fields, and conservation laws take the form of con-
tinuity equations for the respective (conserved) four-currents.

Let us consider the variations

x′
µ
= xµ + δxµ(x) , φ′r(x

′) = φr(x) + δφr(x), (5.45)

and investigate the change of the action of a local field theory with Lagrangian density L ,

δS ≡
∫
Ω′
d4x′ L (φ′r(x

′), ∂′µφ
′
r(x

′), x′)−
∫
Ω

d4xL (φr(x), ∂µφr(x), x), (5.46)

where Ω is an arbitrary spacetime region. (All equations in this section will be understood as
valid up to first order in the variations δxµ and δφr.)

We start with the transformation of the four-volume element:

d4x′ =

∣∣∣∣det(∂x′µ∂xν

)∣∣∣∣ d4x = det (δµν + ∂νδx
µ) d4x = (1+∂0δx

0) · · · (1+∂3δx3)d4x = (1+∂µδx
µ)d4x.

(5.47)
Furthermore, to carry out the substitution of variables x′(x) in the primed action functional we
calculate

∂µφ
′
r(x

′(x)) =
∂x′

ν

∂xµ
∂′νφ

′
r(x

′) = (δνµ + ∂µδx
ν)∂′νφ

′
r(x

′) = ∂′µφ
′
r(x

′) + (∂µδx
ν)∂νφr(x), (5.48)

where in the very last term we could drop the primes as this makes a difference of the second
order, and express

∂′µφ
′
r(x

′)
∣∣
x′(x)

= ∂µφr(x) + ∂µδφr(x)− (∂µδx
ν)∂νφr(x). (5.49)

Now we perform the substitution in the integral (writing L ≡ L (φr(x), ∂µφr(x), x)):

δS =

∫
Ω

d4x
[
(1 + ∂µδx

µ)L
(
φr + δφr, ∂µφr + ∂µδφr − (∂µδx

ν)∂νφr, x+ δx
)
− L

]
=

∫
Ω

d4x

[
∂L

∂φr
δφr +

∂L

∂(∂µφr)

(
∂µδφr − (∂µδx

ν)∂νφr
)
+
∂L

∂xµ

∣∣∣∣
expl

δxµ + (∂µδx
µ)L

]
. (5.50)

(Here the subscript “expl” denotes explicit derivative of the Lagrangian L .) Next, we rewrite the
last term as (∂µδx

µ)L = ∂µ(δx
µL ) − δxµ∂µL , and use the expression for the total derivative

of the Lagrangian,

δxµ∂µL =
∂L

∂φr
δxµ∂µφr +

∂L

∂(∂µφr)
δxν∂ν∂µφr +

∂L

∂xµ

∣∣∣∣
expl

δxµ, (5.51)

to obtain

δS =

∫
Ω

d4x

[
∂L

∂φr
(δφr − δxµ∂µφr) +

∂L

∂(∂µφr)

(
∂µδφr − (∂µδx

ν)∂νφr − δxν∂ν∂µφr
)
+ ∂µ(δx

µL )

]
=

∫
Ω

d4x

[
∂L

∂φr
δ̄φr +

∂L

∂(∂µφr)
∂µδ̄φr + ∂µ(δx

µL )

]
=

∫
Ω

d4x

[(
∂L

∂φr
− ∂µ

∂L

∂(∂µφr)

)
δ̄φr + ∂µ

(
∂L

∂(∂µφr)
δ̄φr + δxµL

)]
, (5.52)
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where we have denoted δ̄φr ≡ δφr − δxν∂νφr.
Now comes the Noether theorem. If we assume that the functions φr(x) are solutions of the

Euler-Lagrange equations of motion, the first term vanishes. If, in addition, δS = 0 for any choice
of the spacetime region Ω, i.e., the action functionals in unprimed and primed variables are equal
(the transformation is a symmetry of the theory with action

∫
d4xL ), then the following local

conservation law (or continuity equation) holds:

∂µf
µ = 0, (5.53)

where

fµ ≡ ∂L

∂(∂µφr)
(δφr − δxν∂νφr) + δxµL

=
∂L

∂(∂µφr)
δφr −

(
∂L

∂(∂µφr)
∂νφr − δµνL

)
δxν (5.54)

is a conserved Noether current.
This local conservation law can be integrated over a three-dimensional volume V to yield

∂t

∫
V

d3x f0 = −
∫
V

d3x ∂if
i = −

∮
∂V

dΣi f
i, (5.55)

where in the last step we have applied the Gauss theorem. If the spatial volume V approaches the
whole of R3, and the fields φr together with their derivatives fall off sufficiently fast at infinity,
then the surface integral on the right vanishes, and the integrated quantity (the Noether charge)∫
d3xf0(x, t) is time-independent.

In the following subsections we will list some common symmetries of field theories, and derive
the corresponding conserved quantities. The variations (5.45) get parametrized by a finite set of
continuous parameters, each generating one Noether current.

5.4.1 Translations and energy-momentum tensor
Consider the variations

x′
µ
= xµ + εaµ , φ′r(x

′) = φr(x), (5.56)
where a = (aµ) is a constant spacetime vector, and ε is infinitesimally small. Now, since

∂x′
µ

∂xν
= δµν → d4x′ = d4x ,

∂

∂xµ
=
∂x′

ν

∂xµ
∂

∂x′ν
=

∂

∂x′µ
, (5.57)

the variation of the action, Eq. (5.46), reduces to

δS =

∫
Ω

d4x
[
L (φr(x), ∂µφr(x), x+ εa)−L (φr(x), ∂µφr(x), x)

]
≈ ε

∫
Ω

d4x aµ
∂L

∂xµ

∣∣∣∣
expl

. (5.58)

Assuming that the Lagrangian does not depend explicitly on x, the transformation (5.56) is a
symmetry of the theory (δS = 0), and we have from Eq. (5.54), with δxν = εaν and δφr = 0,

fµ = −
(

∂L

∂(∂µφr)
∂νφr − δµνL

)
ε aν . (5.59)

Since aµ is arbitrary, we thus obtain (after dividing by ε) four independent conservation laws

∂µT
µ
ν = 0, where Tµν =

∂L

∂(∂µφr)
∂νφr − δµνL . (5.60)



CHAPTER 5. CLASSICAL FIELD THEORY 54

The quantity Tµν is called the canonical energy-momentum (or stress-energy) tensor. The sign
difference between fµ and Tµν is a matter of convention, ensuring that the component T 0

0 (the
energy density) coincides with the Hamiltonian density H of Eq. (5.40). The spatial vector field
T i0 is then the energy flux. The components

T 0
j =

∂L

∂(∂0φr)
∂jφr = πr∂jφr (5.61)

represent the (density of) field momentum, with T ij being the respective field momentum fluxes.
Integrating over R3 we obtain the total four-momentum

Pν =

∫
d3xT 0

ν . (5.62)

Mind the difference between the canonical momentum πr, and the field momentum πr∂jφr.
The canonical momentum relates to the velocity of the field at individual points (the velocity of
individual masses in a discretized picture), while the field momentum relates to the propagation
of waves (it vanishes if φr are spatially constant).

As an illustration, consider a one-dimensional mechanical example — the string from Sec-
tion 5.1.3. This has the Lagrangian density

L =
ρ

2
(∂tφ)

2 − T

2
(∂xφ)

2, which yields ∂L

∂(∂tφ)
= ρ∂tφ ,

∂L

∂(∂xφ)
= −T∂xφ. (5.63)

The canonical energy-momentum tensor is a 2 by 2 matrix(
T tt T tx
T xt T xx

)
=

(
ρ
2 (∂tφ)

2 + T
2 (∂xφ)

2 ρ(∂tφ)(∂xφ)
−T (∂xφ)(∂tφ) −ρ

2 (∂tφ)
2 − T

2 (∂xφ)
2

)
, (5.64)

where the first column contains the energy density T tt and energy flux T tx (introduced in detail
in Ref. [9, Ch. 2.9]), and the second column contains the momentum density T xt and momentum
flux T xx.

The canonical energy-momentum tensors corresponding to the three Lagrangians in Eq. (5.36)
read:

Klein-Gordon field: Tµν = ∂µφ∂νφ− δµν
1

2
(∂ρφ∂

ρφ−m2φ2),

Dirac field: Tµν = iΨ̄γµ∂νΨ− δµν Ψ̄(iγρ∂ρ −m)Ψ,

Electromagnetic field: Tµν = −Fµρ∂νAρ + δµν
1

4
FρσF

ρσ. (5.65)

In this list only the Klein-Gordon Tµν is symmetric, and as such can be directly used as a source
of gravitational field in Einstein’s field equations of general relativity,

Gµν = κTµν . (5.66)

Here κ = 8πG
c4 is the Einstein gravitational constant, and the Einstein tensor Gµν is symmetric

by construction. The other two canonical energy-momentum tensors can be symmetrized via an
algorithm described in [2, p. 47] in a way that does not spoil the conservation law (5.60).

In passing, let us remark that there exists a derivation of the canonical energy-momentum
tensor, which is much simpler than the general procedure of Section 5.4. Taking the total
derivative of a Lagrangian L ≡ L (φr(x), ∂µφr(x)) that does not explicitly depend on x, we find

∂νL =
∂L

∂φr
∂νφr+

∂L

∂(∂µφr)
∂ν∂µφr =

(
∂L

∂φr
− ∂µ

∂L

∂(∂µφr)

)
∂νφr+∂µ

(
∂L

∂(∂µφr)
∂νφr

)
. (5.67)
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If we now impose the Euler-Lagrange equations of motion, and write ∂νL as ∂µ(δµνL ), we obtain

∂µ

(
∂L

∂(∂µφr)
∂νφr − δµνL

)
= 0. (5.68)

5.4.2 Lorentz transformations and angular momentum tensor
Consider Lorentz transformations L = exp

(
− i

2ε ωµνM
µν
)

for infinitesimal values of ε. Recalling
Eq. (2.19), the corresponding variations are

x′
µ
= xµ + ε ωµνx

ν , φ′r(x
′) = φr(x)−

i

2
ε ωµν(S

µν)rsφs(x), (5.69)

where the (effectively 6) matrices Sµν form a certain representation of the Lorentz algebra. For
example, Sµν = 0 for a scalar (spin-0) field, which undergoes trivial internal Lorentz transforma-
tions; Sµν = 1

2σ
µν for a spinor (spin- 12 ) field; and Sµν = Mµν for a vector (spin-1) field, such as

the electromagnetic field.
Let us assume that the action is invariant under these transformations. Then taking into

account the definition of the energy-momentum tensor, we find from Eq. (5.54)

fµ = − i

2

∂L

∂(∂µφr)
ε ωνρ(S

νρ)rsφs − Tµν ε ωνρx
ρ, (5.70)

and due to arbitrariness of the parameters ωµν we obtain 6 independent conservation laws:

∂µM
µνρ = 0, where Mµνρ = −i ∂L

∂(∂µφr)
(Sνρ)rsφs − (Tµνxρ − Tµρxν) (5.71)

is the (total) angular momentum tensor. Its first term, which depends on intrinsic transformation
properties of the field φr through the form of the generators Sµν , is called the spin tensor, and
the rest is the orbital angular momentum tensor.

5.4.3 Internal rotations and conserved currents
Consider internal transformations of a multi-component field Φ = (φr) of the form

Φ′(x) = exp (iελaTa)Φ(x) ≈ Φ(x) + iελaTaΦ(x), (5.72)

where the matrices Ta acting on the internal space are generators of a certain Lie group of
internal symmetries. Keeping the spacetime coordinates fixed, δx = 0, we find, in components,

δφr(x) = iελa(Ta)rsφs(x) → fµ =
∂L

∂(∂µφr)
δφr = iελa

∂L

∂(∂µφr)
(Ta)rsφs. (5.73)

If the transformation in question is a symmetry for arbitrary coefficients λa (assumed x-
independent), we obtain independent Noether currents, one for each generator Ta:

∂µj
µ
a = 0, where jµa = −i ∂L

∂(∂µφr)
(Ta)rsφs. (5.74)

(The factor −1 has been included to match the usual conventions.) The corresponding Noether
charges can be expressed with a help of the canonical momentum πr =

∂L
∂(∂0φr)

as

Qa =

∫
d3x j0a = −i

∫
d3xπr(Ta)rsφs. (5.75)
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A simple case to consider is that of a two-component real field, and internal two-dimensional
rotations

Φ′(x) = eiεTΦ(x), with T =

(
0 i
−i 0

)
. (5.76)

Instead of the components φ1 and φ2 it is advantageous to use a complex field ϕ and its complex
conjugate ϕ∗ defined via(

ϕ
ϕ∗

)
=

1√
2

(
φ1 + iφ2
φ1 − iφ2

)
= U

(
φ1
φ2

)
, where U =

1√
2

(
1 i
1 −i

)
is unitary. (5.77)

This is a transformation of generalized coordinates within the field-theoretic Lagrangian for-
malism, which does not change the form of Euler-Lagrange equations, nor the form of Noether
currents. In complex notation Eq. (5.72) reads(

ϕ′

ϕ′∗

)
= UΦ′ = exp

(
iεUTU†)UΦ =

(
eiεϕ
e−iεϕ∗

)
≈
(
ϕ+ iεϕ
ϕ∗ − iεϕ∗

)
, since UTU† =

(
1 0
0 −1

)
.

(5.78)
Hence we identify the variations δϕ = iεϕ, δϕ∗ = −iεϕ∗, and the conserved current

jµ = −1

ε
fµ = −i ∂L

∂(∂µϕ)
ϕ+ i

∂L

∂(∂µϕ∗)
ϕ∗. (5.79)

(For a complex field, ϕ and ϕ∗ are regarded as its independent ‘components’, and the Noether
currents are obtained by summing over these components — just like in Eq. (5.54), where the
sum runs over components enumerated by r.)

For example, the Lagrangian of a free complex Klein-Gordon field ϕ,

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ, (5.80)

is clearly invariant under phase rotations ϕ′(x) = eiλϕ(x), ϕ′∗(x) = e−iλϕ∗(x), and the corre-
sponding current reads

jµ = −iϕ ∂µϕ∗ + iϕ∗∂µϕ. (5.81)

This Noether current coincides (up to a constant prefactor) with the ‘Klein-Gordon’ current in
Eq. (1.23).

Finally, let us remark that for internal transformations there is again a quick derivation of
conserved currents that bypasses the general procedure of Section 5.4. Since spacetime trans-
formations are not involved, the invariance of the action is tantamount to the invariance of the
Lagrangian, whose variation reads

L (φr+δφr, ∂µφr+∂µδφr, x)−L (φr, ∂µφr, x) =

(
∂L

∂φr
− ∂µ

∂L

∂(∂µφr)

)
δφr+∂µ

(
∂L

∂(∂µφr)
δφr

)
.

(5.82)
If this variation is zero, and the Euler-Lagrange equations hold, we obtain the continuity equation

∂µ

(
∂L

∂(∂µφr)
δφr

)
= 0. (5.83)
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5.5 Exercises
Exercise 19. Two coupled oscillators. Consider an oscillating system with Lagrangian

L(q1, q2, q̇1, q̇2) =
M

2
q̇21 +

M

2
q̇22 −

κ0
2
q21 −

κ0
2
q22 −

κI
2
(q2 − q1)

2, κ0, κI > 0. (5.84)

1. What is the system’s Hamiltonian?

2. Find the normal modes and their frequencies.

3. Write general solution of the equations of motion.

Solution:

1. The Hamiltonian is obtained by determining canonical momenta, pn = ∂L
∂q̇n

= Mq̇n (n =

1, 2), and, in this case, simply changing the sign of the potential term:

H(qn, pn) =
p21
2M

+
p22
2M

+
1

2
~q TU ~q, where U =

(
κ0 + κI −κI
−κI κ0 + κI

)
, ~q =

(
q1
q2

)
.

(5.85)

2. We diagonalise the matrix U:

U

(
1
1

)
= κ0

(
1
1

)
, U

(
1
−1

)
= (κ0 + 2κI)

(
1
−1

)
, (5.86)

whence

U
1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

V

=
1√
2

(
1 1
1 −1

)(
κ0 0
0 κ0 + 2κI

)
︸ ︷︷ ︸

K

→ U = VKVT (5.87)

By comparison with Eq. (5.8) we identify

K =M Ω2 → Ω =

(
ω1 0
0 ω2

)
=

(√
κ0/M 0

0
√
(κ0 + 2κI)/M

)
. (5.88)

3. General trajectory reads (see Eq. (5.14))

~q(t) =

2∑
k=1

~vk√
2Mωk

(
Ake

−iωkt +A∗
ke
iωkt
)
, where ~v1 =

1√
2

(
1
1

)
, ~v2 =

1√
2

(
1
−1

)
,

(5.89)
and where A1, A2 ∈ C are arbitrary constants fixing the initial conditions.

Exercise 20. Functional derivative of an integral functional. Calculate a functional derivative
of a (generalised) action functional

S[φr] =

∫
dDxL

(
φr(x), ∂µφr(x), ∂µ∂νφr(x), x

)
. (5.90)

Solution:
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δS

δφs(y)
=

∫
dDx

[
∂L

∂φr

δφr(x)

δφs(y)
+

∂L

∂(∂µφr)

δ(∂µφr(x))

δφs(y)
+

∂L

∂(∂µ∂νφr)

δ(∂µ∂νφr(x))

δφs(y)

]
=

∫
dDx

[
∂L

∂φr
+

∂L

∂(∂µφr)
∂µ +

∂L

∂(∂µ∂νφr)
∂µ∂ν

]
δ(x− y)δrs

=

∫
dDx

[
∂L

∂φs
− ∂µ

∂L

∂(∂µφs)
+ ∂µ∂ν

∂L

∂(∂µ∂νφs)

]
δ(x− y)

=
∂L

∂φs
− ∂µ

∂L

∂(∂µφs)
+ ∂µ∂ν

∂L

∂(∂µ∂νφs)

∣∣∣∣
y

, (5.91)

where y is substituted in each of the resulting terms in all functions in L . It should be clear how
to generalise this formula to the case of a function L depending on arbitrarily high derivatives
of φ.

Exercise 21. Klein-Gordon field in Lagrangian and Hamiltonian formalism. Consider the
Lagrangian density of a one-component real Klein-Gordon field

L (φ, ∂µφ) =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2. (5.92)

1. Derive the Euler-Lagrange equation of motion.

2. Find the canonical momentum field π and the Hamiltonian density H .

3. Write Hamilton’s canonical equations, and show that they combine to yield the Euler-
Lagrange equation.

Solution:

1. By Eq. (5.35),

∂L

∂(∂µφ)
= ∂µφ → ∂µ

∂L

∂(∂µφ)
− ∂L

∂φ
= ∂µ∂µφ+m2φ = 0 (5.93)

(The equation of motion of the Klein-Gordon field is indeed the Klein-Gordon equation.)

2. By Eqs. (5.37) and (5.40),

π =
∂L

∂(∂0φ)
= ∂0φ → H = π2 − L =

1

2
[π2 + (∂iφ)(∂iφ) +m2φ2]. (5.94)

3. By Eq. (5.44),

∂tφ =
∂H

∂π
= π,

∂tπ = −∂H

∂φ
+ ∂i

∂H

∂(∂iφ)
= −m2φ+ ∂i∂iφ. (5.95)

Taking time derivative of the first equation and substituting into the second we find

∂2t φ = −m2φ+ ∂i∂iφ → (∂µ∂µ +m2)φ = 0. (5.96)



CHAPTER 5. CLASSICAL FIELD THEORY 59

Exercise 22. Dirac field Lagrangian and energy-momentum tensor. Consider the Lagrangian
density for the Dirac field

L (Ψ, Ψ̄, ∂µΨ, ∂µΨ̄) = Ψ̄(iγµ∂µ −m)Ψ = iψ̄α(γ
µ)αβ ∂µψβ −mψ̄αψα, (5.97)

where the bispinor Ψ = (ψα) and its Dirac conjugate Ψ̄ = (ψ̄α), where ψ̄α = ψ∗
βγ

0
βα, are treated

as independent four-component fields.
1. Derive the Euler-Lagrange equations of motion.

2. Show that orthochronous Lorentz transformations are symmetries of the action.

3. Determine the Dirac field’s canonical energy-momentum tensor, and the total energy P0.

4. Determine the conserved current and the integrated total charge corresponding to the
‘phase’ transformation Ψ′(x) = eiλΨ(x).

Solution:

1. Variations with respect to ψ̄α yield the Dirac equation,
∂L

∂ψ̄α
− ∂µ

∂L

∂(∂µψ̄α)
= (iγµ∂µΨ)α −mψα − ∂µ(0) → (iγµ∂µ −m)Ψ = 0, (5.98)

while variations with respect to ψα yield its Dirac conjugate,
∂L

∂ψα
− ∂µ

∂L

∂(∂µψα)
= −mψ̄α − ∂µ(iΨ̄γ

µ)α → i∂µΨ̄γ
µ +mΨ̄ = 0. (5.99)

2. Taking into account the transformation properties of the Dirac spinors under Lorentz trans-
formations x′µ = Lµνx

ν ,

Ψ′(x′) = S(L)Ψ(x) , Ψ̄′(x′) = Ψ̄(x)S(L)−1, where S(L)−1γµS(L) = Lµνγ
ν ,

(5.100)
we may verify that∫

d4x′ Ψ̄′(x′)
(
iγµ∂′µ −m

)
Ψ′(x′) =

∫
d4x Ψ̄(x)S(L)−1

(
iγµ(L−1)νµ∂ν −m

)
S(L)Ψ(x)

=

∫
d4x Ψ̄(x)

(
iLµργ

ρ(L−1)νµ∂ν −m
)
Ψ(x)

=

∫
d4x Ψ̄(x)

(
iγµ∂µ −m

)
Ψ(x), (5.101)

where we have also used the relations

d4x′ = |det L| d4x = d4x ,
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (L−1)νµ

∂

∂xν
. (5.102)

3. By Eq. (5.60) the canonical energy-momentum tensor reads

Tµν =
∂L

∂(∂µψα)
∂νψα +

∂L

∂(∂µψ̄α)
∂νψ̄α − δµνL = iΨ̄γµ∂νΨ− δµνL . (5.103)

(It is worth to note that L = 0 on shell, i.e., for solutions of the equations of motion.)
The total energy is

P0 =

∫
d3xT 0

0 =

∫
d3x

(
iΨ̄γ0∂0Ψ− Ψ̄(iγµ∂µ−m)Ψ

)
=

∫
d3x Ψ̄(−iγi∂i+m)Ψ. (5.104)
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4. The internal transformation

Ψ′(x) = eiεΨ(x) ≈ Ψ(x) + iεΨ(x)

Ψ̄′(x) = e−iεΨ̄(x) ≈ Ψ̄(x)− iεΨ̄(x) (5.105)

is clearly a symmetry of the Lagrangian. From Eq. (5.54) we find the conserved current:

fµ =
∂L

∂(∂µψα)
δψα +

∂L

∂(∂µψ̄α)
δψ̄α = (iΨ̄γµ)α iεψα → Jµ = −1

ε
fµ = Ψ̄γµΨ, (5.106)

which coincides with the Dirac current of Eq. (3.32).
The corresponding total charge reads

Q =

∫
d3xJ0 =

∫
d3x Ψ̄γ0Ψ =

∫
d3xΨ†Ψ. (5.107)



Chapter 6

Quantum many-body systems

Canonical quantisation promotes functions (F,G, . . .) of phase-space variables to operators (F̂ , Ĝ, . . .),
and Poisson brackets to commutators,

[F̂ , Ĝ] = i~ {̂F,G}PB (in particular, [q̂, p̂] = i~ {̂q, p}PB = i~ 1̂). (6.1)

The classical Hamilton equations then become the quantum Heisenberg equations for time evo-
lution of operators in Heisenberg picture:

d

dt
F = {F,H}PB → d

dt
F̂ = − i

~
[F̂ , Ĥ]. (6.2)

In quantum field theory, the classical fields φ(x, t) (i.e., C or R-valued functions, possibly
with several components) are promoted to operator-valued functions φ̂(x, t). (The Heisenberg
picture, where operators are time-dependent, is therefore rather natural.) To gain some intuition
for these somewhat abstract objects let us first step back from continuous classical fields and
discuss quantization of discrete systems of coupled oscillators, following the classical treatment
in Chapter 5.1.

(In this chapter ~ and c will be shown explicitly.)

6.1 Quantum coupled oscillators
6.1.1 One-dimensional harmonic oscillator
The quantum version of the one-dimensional harmonic oscillator of Section 5.1.1 is described by
the Hamiltonian operator

Ĥ =
p̂2

2M
+

1

2
Mω2q̂2. (6.3)

The Hamiltonian can be factorised using creation and annihilation (or ladder) operators â† and
â (quantum analogues of the classical complex variables z∗ and z), defined by

â =
ẑ√
~
=

√
Mω

2~
q̂ +

ip̂√
2M~ω

, and satisfying [â, â†] =
1

~
[ẑ, ẑ∗] =

i~
~
{̂z, z∗}PB︸ ︷︷ ︸

−i

= 1. (6.4)

One finds
Ĥ =

~ω
2

(
â†â+ â â†

)
= ~ω

(
â†â+

1

2

)
, (6.5)

61
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where the term 1
2~ω (the ground state energy), which is not present in the classical Hamiltonian

H(z, z∗) = ωz∗z, appears due to non-commutativity of the operators q̂ and p̂. However, it does
not affect the Heisenberg equations of motion, which read

d

dt
â = − i

~
[â, Ĥ] = −iω[â, â†]â = −iωâ → â(t) = â(0)e−iωt , â†(t) = â†(0)eiωt. (6.6)

The Heisenberg-picture position operator q̂(t) is then retrieved from â(t) and â†(t):

q̂(t) =

√
~

2Mω

(
â(t) + â†(t)

)
=

√
~

2Mω

(
â(0)e−iωt + â†(0)eiωt

)
. (6.7)

Similarly for the momentum operator p̂(t) =
√
2M~ω
2i

(
â(t)− â†(t)

)
.

The eigenstates of Ĥ are enumerated by n = 0, 1, 2, . . .:

Ĥ |n〉 = En |n〉 , where En = ~ω
(
n+

1

2

)
and |n〉 = (â†)n√

n!
|0〉 . (6.8)

The ground state |0〉 is annihilated by the annihilation operator â,

â |0〉 = 0 → 〈q|

(√
Mω

2~
q̂ +

ip̂√
2M~ω

)
|0〉 =

(√
Mω

2~
q +

√
~

2Mω

∂

∂q

)
ψ0(q) = 0, (6.9)

the latter equation yielding, by a straightforward integration, the ground state wave-function

ψ0(q) =

(
Mω

π~

)1/4

exp

(
−Mω

2~
q2
)
. (6.10)

6.1.2 Many oscillators
Let us consider a quantum version of the classical system of coupled harmonic oscillators treated
in Section 5.1.2. The Hamiltonian operator

Ĥ =
N∑
n=1

p̂2n
2M

+
1

2

N∑
n,n′=1

Unn′ q̂nq̂n′ (6.11)

can again be ‘decoupled’ by introducing normal coordinates, i.e., operators η̂k (and the conjugate
momenta ρ̂k) such that

~̂q = V ~̂η, where VTV = I , U = VMΩ2 VT , Ω = diag(ω1, . . . , ωN ). (6.12)

To each mode k = 1, . . . , N corresponds a creation operator â†k and an annihilation operator âk
(constructed as in Eq. (6.4) with q̂ → η̂k, p̂ → ρ̂k, ω → ωk), which satisfy the commutation
relations

[âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = [â†k, â

†
k′ ] = 0, (6.13)

and in terms of which the Hamiltonian reads

Ĥ =
∑
k

Ĥk =
∑
k

(
ρ̂2k
2M

+
M

2
ω2
kη̂

2
k

)
=
∑
k

~ωk
(
â†kâk +

1

2

)
. (6.14)

(Compare with the classical expressions (5.12) and (5.13).)
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Since Ĥ is a sum of independent Hamiltonians Ĥk corresponding to the individual normal
modes, it is easy to obtain the full set of eigenstates of the system, enumerated by N numbers
nk = 0, 1, 2, . . .:

Ĥ |. . . , nk, . . .〉 = (E(1)
n1

+ · · ·+ E(N)
nN

) |. . . , nk, . . .〉 , (6.15)

where the energy levels of the kth mode are

E(k)
nk

= ~ωk
(
nk +

1

2

)
, and |. . . , nk, . . .〉 =

N∏
k=1

(â†k)
nk

√
nk!

|0〉 (6.16)

are the eigenstates of the system, in which the individual modes are excited to levels n1, n2, . . . , nN .
|0〉 ≡ |0, . . . , 0〉 is the vacuum state — the lowest energy state of the system with energy
E0 = ~

2

∑
k ωk.

The operators of normal coordinates η̂k evolve in time according to Eq. (6.7) (with the
replacements q̂ → η̂k, ω → ωk). A general solution of the Heisenberg equations of motion for
the position (or rather displacement) operators q̂n is then, analogously to the classical case,
Eq. (5.14),

~̂q(t) =
∑
k

~vkη̂k(t) =
∑
k

~vk√
2Mωk/~

(
âk(0)e

−iωkt + â†k(0)e
iωkt
)
, (6.17)

where ~vk are columns of the matrix V (the ‘shapes’ of the normal modes).

6.1.3 Vacuum state
The vacuum |0〉 is the state that is annihilated by all annihilation operators, âk |0〉 = 0, and so
it can be written explicitly as a product over all modes k of the single-oscillator ground state
wave-functions (6.10) (with q → ηk, ω → ωk):

ψ0(~η) = N exp

(
−M
2~
∑
k

ωkη
2
k

)
= N exp

(
−M
2~
~η TΩ ~η

)
, where N ≡

(∏
k

Mωk
π~

)1/4

.

(6.18)
Expressed in the original coordinates qn, via ~η = VT ~q, the vacuum wave-function has the form
of a multivariate Gaussian state

ψ0(~q) = N exp

(
−M
2~
~q TVΩVT ~q

)
= N exp

(
− 1

2~
∑
n,n′

Ann′qnqn′

)
, (6.19)

where the matrix

A = (Ann′) =M VΩVT = (M U)1/2 is symmetric positive-definite. (6.20)

The structure of the vacuum state, presented by the matrix A, is related to the structure
of the oscillatory network, i.e., the potential energy matrix U, in a straightforward way via the
square root in Eq. (6.20). Hence, if U possesses a certain symmetry (i.e., there exists a matrix P
such that PUP−1 = U, or [P,U] = 0), the “ground state matrix” A exhibits this symmetry as well:
[P,A] = 0. For example, the linear chain of Section 5.1.3 is invariant under (discrete) translations
with Pnn′ = δn+1,n′ that act by shifting the index n: (P~q)n =

∑
n′ δn+1,n′qn′ = qn+1.

An important observation is that although in normal coordinates the vacuum state is a
product state (it is a product of the individual modes’ ground states), it is a correlated (entangled)



CHAPTER 6. QUANTUM MANY-BODY SYSTEMS 64

state in the original coordinates qn (see Exercise 24 for an example). These vacuum correlations
are captured by the matrix A:

〈0| q̂nq̂n′ |0〉 = ~
2
(A−1)nn′ , 〈0| q̂n |0〉 = 0, (6.21)

as shown in Exercise 23 (the second formula is a trivial consequence of the vacuum wave-function
being symmetric under ~q → −~q).

6.2 Field theory for non-relativistic many-particle systems
In condensed matter physics one typically studies non-relativistic quantum systems consisting of
many indistinguishable particles, e.g., a gas of electrons in a solid state sample. If interparticle
interactions are neglected, the N -particle wave-function Ψ follows the Schrödinger equation of
the form

i~
∂Ψ

∂t
= (Hx1

+ · · ·+HxN
)Ψ(x1, . . . ,xN , t), where Hx = − ~2

2m
∆x + V (x) (6.22)

is a single-particle Hamiltonian. The multi-particle wave-function Ψ(x1, . . . ,xN ) is either totally
symmetric (in the case of boson), or totally antisymmetric (in the case of fermions). The ‘exter-
nal’ (or ‘background’) potential V is identical for each particle (e.g., the electric potential of an
atomic lattice).

In this section we will provide a quantum-field-theoretical description of this many-body
system. It will serve as an intermediate step between non-relativistic quantum mechanics and
relativistic quantum field theory, which will be of our main interest from Chapter 7 onwards.

We start by observing that the single-particle Schrödinger equation

i~
∂ψ

∂t
= Hxψ(x, t) (6.23)

can be viewed as an equation of motion of a classical field theory with Lagrangian density (ψ
and ψ∗ treated as independent fields)

L = i~ψ∗∂tψ − ~2

2m
(∂iψ

∗)(∂iψ)− V (x)ψ∗ψ (6.24)

(see Exercise 25). The canonical momenta and the field Hamiltonian read

π =
∂L

∂(∂tψ)
= i~ψ∗ , π∗ =

∂L

∂(∂tψ∗)
= 0, (6.25)

and

H =

∫
d3x (π∂tψ − L ) =

∫
d3x

( ~2

2m
(∂iψ

∗)(∂iψ) + V (x)ψ∗ψ
)
=

∫
d3xψ∗(x)Hx ψ(x). (6.26)

Quantising the ‘Schrödinger field’ ψ(x), we shall obtain a powerful method to handle the corre-
sponding multi-particle system. This process of promoting a single-particle quantum-mechanical
wave-function (viewed as a classical field) into an x-dependent quantum operator ψ̂(x) is called
the second quantisation (the first quantisation being the transition from the single-particle clas-
sical mechanics to quantum mechanics with Schrödinger equation (6.23)).

In passing let us note that interparticle interactions, for example, between electrons of the
electron gas, often play an important role, and a large part of condensed matter physics is devoted
to understanding their effects. We will discuss interacting systems at least briefly in Section 6.2.3
to see that the field-theoretic formalism extends nicely to this more general scenario.
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6.2.1 Bosonic systems
Since ψ∗ = 1

i~π and π∗ = 0, the field theory with Hamiltonian (6.26) features effectively only
two canonical fields, ψ and π (or equivalently ψ and ψ∗). For bosonic systems we promote their
canonical Poisson brackets

{ψ(x), π(y)}PB = δ(x− y) and {ψ(x), ψ(y)}PB = {π(x), π(y)}PB = 0 (6.27)

to equal-time commutation relations

[ψ̂(x, t), π̂(y, t)] = i~ δ(x− y), or [ψ̂(x, t), ψ̂†(y, t)] = δ(x− y), (6.28)

and
[ψ̂(x, t), ψ̂(y, t)] = [ψ̂†(x, t), ψ̂†(y, t)] = 0 (6.29)

between operator-valued fields. We are working in the Heisenberg picture, in which the field
operator depends on time as

ψ̂(x, t) = e
i
~ tĤ ψ̂(x, 0)e−

i
~ tĤ , ψ̂(x) ≡ ψ̂(x, 0), where Ĥ =

∫
d3x ψ̂†(x)Hx ψ̂(x) (6.30)

is an operator analogue of the total Hamiltonian (6.26) of the classical field theory. Ĥ is time-
independent, d

dtĤ = − i
~ [Ĥ, Ĥ] = 0, since we assume that the potential V (x) (and hence Hx)

does not depend explicitly on time.
Heisenberg’s equation of motion for the quantum field reads

i~
∂ψ̂

∂t
(x, t) = [ψ̂(x, t), Ĥ(t)]

=

∫
d3y

[
ψ̂(x, t), ψ̂†(y, t)Hyψ̂(y, t)

]
=

∫
d3y δ(x− y)Hyψ̂(y, t)

= Hxψ̂(x, t). (6.31)

This equation is nothing but the Schrödinger equation for an unknown function ψ̂(x, t), which
is now operator-valued.

To solve it we employ the eigenstates of the (first quantised, or single-particle) Hamiltonian
Hx, i.e., the complete set of solutions of the one-particle stationary Schrödinger equation:

Hxuk(x) = εkuk(x) ,

∫
d3xu∗k(x)uk′(x) = δkk′ ,

∑
k

u∗k(x)uk(y) = δ(x− y), (6.32)

where k = 1, 2, . . ., and εk are (possibly degenerate) one-particle energy levels. In this fixed basis
we expand the quantum field,

ψ̂(x, t) =

∫
d3y ψ̂(y, t) δ(y − x) =

∑
k

∫
d3y ψ̂(y, t)u∗k(y)︸ ︷︷ ︸

âk(t)

uk(x) =
∑
k

âk(t)uk(x), (6.33)

so the operator nature is now carried by the time-dependent expansion coefficients âk(t), â†k(t)
(uk(x) are ordinary complex-valued functions). Plugging this expansion into Eq. (6.31) we have∑

k

i~
dâk
dt

uk(x) =
∑
k

âk(t)Hxuk(x) =
∑
k

εkâk(t)uk(x), (6.34)
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and due to the orthogonality (and hence linear independence) of the eigenstates uk(x) we can
omit the sum, and obtain for each k separately

i~
dâk
dt

= εkâk(t) → âk(t) = e−
i
~ t εk âk, where âk ≡ âk(0). (6.35)

The operators â†k will turn out to be the creation operators corresponding to the ‘modes’
(or orbitals) uk, and âk the respective annihilation operators. To see this let us first use the
commutation relations (6.28) to calculate the equal-time commutators

[âk(t), â
†
k′(t)] =

∫
d3x d3y [ψ̂(x, t), ψ̂†(y, t)]u∗k(x)uk′(y)

=

∫
d3x d3y δ(x− y)u∗k(x)uk′(y)

=

∫
d3xu∗k(x)uk′(x)

= δkk′ . (6.36)

Similarly, using (6.29), we find

[âk(t), âk′(t)] = [â†k(t), â
†
k′(t)] = 0. (6.37)

Now let us define the vacuum state |0〉 implicitly by the requirements

〈0|0〉 = 1 and âk |0〉 = 0 (∀k), (6.38)

and calculate

〈0| ψ̂(x) â†k |0〉 =
∑
k′

uk′(x) 〈0| [âk′ , â†k] |0〉 =
∑
k′

uk′(x) 〈0| δk′k |0〉 = uk(x). (6.39)

â†k |0〉 can be interpreted as a one-particle state whose x-representation, produced by the action
of 〈0| ψ̂(x) ≡ 〈x|, coincides with the eigenfunction uk(x). (Similarly, since 〈0| ψ̂(x) ψ̂†(y) |0〉 =
δ(x− y) is the wave-function of a particle localized at position y, the operator ψ̂†(y) acting on
the vacuum “creates” a particle at position y.) Further applications of the creation operators
give rise to (normalized) states of the form

|n1, n2, . . .〉 =
(â†1)

n1

√
n1!

(â†2)
n2

√
n2!

. . . |0〉 , (6.40)

which span the so-called bosonic Fock space — the Hilbert space of a system (a grand-canonical
ensemble) with arbitrary number of indistinguishable bosons. These states are eigenstates of the
particle number operators

n̂k = â†kâk, which satisfy [n̂k, n̂k′ ] = 0 and [n̂k, â
†
k′ ] = δkk′ â

†
k (no sum over k).

(6.41)
Indeed, since n̂k |0〉 = 0, we easily calculate

n̂k (â
†
1)
n1(â†2)

n2 . . . |0〉 = (â†1)
n1 . . . [n̂k, (â

†
k)
nk ] . . . |0〉 = nk (â

†
1)
n1(â†2)

n2 . . . |0〉 . (6.42)

Note that the particle number operators are time-independent:

n̂k(t) = â†k(t) âk(t) = e
i
~ t εk â†k e

− i
~ t εk âk = n̂k. (6.43)
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An N -particle state that contains n1 particles in mode u1, n2 particles in mode u2, etc.
(n1 + n2 + . . . = N) can be written as

|n1, n2, . . .〉 = C â†k1 . . . â
†
kN

|0〉 , where C ≡ 1√
n1!n2! . . .

, (6.44)

and k1 = . . . = kn1
= 1, kn1+1 = . . . = kn1+n2

= 2, etc. The corresponding N -particle wave-
function reads, by Exercise 26,

1√
N !

〈0| ψ̂(x1) . . . ψ̂(xN ) |n1, n2, . . .〉 =
C√
N !

∑
σ∈SN

uk1(xσ(1)) . . . ukN (xσ(N)), (6.45)

where SN is the group of permutations of the set {1, . . . , N}. This wave-function is totally
symmetric since it is constructed with the commuting (bosonic) operators ψ̂(x).

The field Hamiltonian operator expressed in terms of âk and â†k reads

Ĥ(t) =

∫
d3x ψ̂†(x, t)Hxψ̂(x, t)

=

∫
d3x ψ̂†(x, t)Hx

∑
k

âk(t)uk(x)

=
∑
k

εk

∫
d3x ψ̂†(x, t)uk(x)âk(t)

=
∑
k

εk â
†
k(t)âk(t)

=
∑
k

εkn̂k (6.46)

(which is indeed a time-independent operator). The total energy of any multi-particle state
|n1, n2, . . .〉 is therefore easy to find:

Ĥ |n1, n2, . . .〉 =
(∑

k

εknk

)
|n1, n2, . . .〉 (6.47)

Finally, let us show that the time evolution of the N -particle wave-function of Eq. (6.22) is
implied by the time evolution of the quantum field ψ̂(x, t) satisfying Eq. (6.31). To this end take
an arbitrary fixed state |Ψ〉 in the Fock space, and identify

Ψ(x1, . . . ,xN , t) =
1√
N !

〈0| ψ̂(x1, t) . . . ψ̂(xN , t) |Ψ〉 . (6.48)

The wave-function thus constructed then satisfies

i~
∂

∂t
Ψ(x1, . . . ,xN , t) =

i~√
N !

〈0|
N∑
p=1

ψ̂(x1, t) . . .
∂ψ̂(xp, t)

∂t
. . . ψ̂(xN , t) |Ψ〉

=
1√
N !

〈0|
N∑
p=1

ψ̂(x1, t) . . . Hxp
ψ̂(xp, t) . . . ψ̂(xN , t) |Ψ〉

=
( N∑
p=1

Hxp

)
Ψ(x1, . . . ,xN , t), (6.49)

which is nothing but the N -particle Schrödinger equation (6.22).
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6.2.2 Fermionic systems
For fermions the N -particle wave-function

Ψ(x1, . . . ,xN , t) =
1√
N !

〈0| ψ̂(x1, t) . . . ψ̂(xN , t) |Ψ〉 (6.50)

must be totally antisymmetric to comply with the Pauli exclusion principle. This can be achieved
by postulating equal-time anticommutation relations

{ψ̂(x, t), ψ̂†(y, t)} = δ(x− y) , {ψ̂(x, t), ψ̂(y, t)} = {ψ̂†(x, t), ψ̂†(y, t)} = 0. (6.51)

This approach to quantization of classical Poisson brackets is different from our experience with
quantum mechanics, where the correspondence principle always postulates commutation relations
between quantum operators. Yet, in quantum field theory, quantizing with anticommutators is
appropriate for all fermionic systems.

Using the anticommutator Leibniz role [A,BC] = {A,B}C −B{A,C}, the Heisenberg equa-
tion again turns into the Schrödinger equation for ψ̂(x, t):

i~
∂ψ̂

∂t
(x, t) =

∫
d3y

[
ψ̂(x, t), ψ̂†(y, t)Hyψ̂(y, t)

]
=

∫
d3y {ψ̂(x, t), ψ̂†(y, t)}Hyψ̂(y, t)

= Hxψ̂(x, t). (6.52)

Its solutions can again be found in the form

ψ̂(x, t) =
∑
k

b̂k(t)uk(x) , b̂k(t) = e−
i
~ t εk b̂k, (6.53)

where uk are the eigenstates of Hx from Eq. (6.32).
Similarly as in the bosonic case one can show that the fermionic creation and annihilation

operators b̂†k and b̂k satisfy the anticommutation relations

{b̂k(t), b̂†k′(t)} = δkk′ , {b̂k(t), b̂k′(t)} = {b̂†k(t), b̂
†
k′(t)} = 0. (6.54)

Since (b̂†k)
2 = 1

2{b̂
†
k, b̂

†
k} = 0, the (normalised) states

|n1, n2, . . .〉 = (b̂†1)
n1(b̂†2)

n2 . . . |0〉 have nk ∈ {0, 1}. (6.55)

They span the fermionic Fock space. Alternatively, for N =
∑
k nk, we can write

|n1, n2, . . .〉 = b̂†kN . . . b̂
†
k1

|0〉 , (6.56)

where k1, . . . , kN is a list of occupied modes. (Note that in the fermionic case, reordering of
the creation operators can result in a sign change.) The corresponding N -particle fermionic
wave-function reads (by Exercise 26)

1√
N !

〈0| ψ̂(x1) . . . ψ̂(xN ) |n1, n2, . . .〉 =
1√
N !

∑
σ∈SN

(sgnσ)uk1(xσ(1)) . . . ukN (xσ(N)). (6.57)

It is antisymmetric due to the anticommuting nature of the (fermionic) operators ψ̂(x).
The N -particle Schrödinger equation (6.22) follows from the equation (6.52) for quantum

field ψ̂(x, t) in the same way as in the bosonic case, Eq. (6.49).
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6.2.3 Interparticle interactions
An N -body quantum-mechanical Hamiltonian that takes into account a two-body interparticle
interaction potential VI reads

N∑
p=1

Hxp +
1

2

∑
p 6=p′

VI(xp,xp′), where Hx = − ~2

2m
∆x + V0(x) and VI(x,y) = VI(y,x).

(6.58)
For example, we could have VI(x,y) = 1

4πε0
e2

|x−y| describing the Coulomb interaction between
electrons. Standard quantum mechanics provides the N -particle Schrödinger equation

i~
∂Ψ

∂t
=

 N∑
p=1

Hxp
+

1

2

∑
p 6=p′

VI(xp,xp′)

Ψ(x1, . . . ,xN , t) (6.59)

as a description of system’s dynamics.
Alternatively, this interacting many-body system can be described by a field theory (see

Exercise 25) with classical Lagrangian L = L0 + LI , where

L0 =

∫
d3xL0 and LI = −1

2

∫
d3x d3y ψ∗(x, t)ψ∗(y, t)VI(x,y)ψ(y, t)ψ(x, t) (6.60)

are, respectively, the (local) ‘free’ Lagrangian with density L0 given by Eq. (6.24), and the
(non-local) ‘interacting’ Lagrangian. The corresponding total Hamiltonian

H =

∫
d3xπ∂tψ − L0 − LI =

∫
d3xψ∗(x)Hx ψ(x)− LI , (6.61)

after quantization of the field ψ(x, t) using commutation relations (6.28) for bosons, or anticom-
mutation relations (6.51) for fermions, becomes the operator

Ĥ =

∫
d3x ψ̂†(x)Hx ψ̂(x) +

1

2

∫
d3x d3y ψ̂†(x)ψ̂†(y)VI(x,y)ψ̂(y)ψ̂(x). (6.62)

The ensuing Heisenberg equation

i~
∂ψ̂

∂t
(x, t) = [ψ̂(x, t), Ĥ(t)] = Hxψ̂(x, t) +

∫
d3y ψ̂†(y, t)VI(x,y)ψ̂(y, t) ψ̂(x, t). (6.63)

is of the same form as the classical field equation (6.100) in Exercise 25 (for both bosons and
fermions). Using the properties

〈0| ψ̂†(x, t) = 0 and [ψ̂(x, t), ψ̂†(y, t)ψ̂(y, t)] = δ(x− y)ψ̂(y, t) (6.64)

one can show that even with interparticle interactions included, the equation (6.63) for quantum
field implies the N -particle Schrödinger equation (6.59):

i~
∂Ψ

∂t
=

N∑
p=1

Hxp
Ψ+

1√
N !

〈0|
N∑
p=1

ψ̂(x1, t) . . .

∫
d3y ψ̂†(y, t)VI(xp,y)ψ̂(y, t) ψ̂(xp, t) . . . ψ̂(xN , t) |Ψ〉

=

N∑
p=1

HxpΨ+
∑
p′<p

VI(xp,xp′)Ψ, (6.65)
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where, as in the case of free bosons or fermions,

Ψ(x1, . . . ,xN , t) =
1√
N !

〈0| ψ̂(x1, t) . . . ψ̂(xN , t) |Ψ〉 . (6.66)

Eq. (6.63) and its Hermitian conjugate form a coupled system of non-linear partial integro-
differential equations for operator-valued functions ψ̂ and ψ̂†. A simple mode expansion

ψ̂(x, t) =
∑
k

âk(t)uk(x) , âk(t) = e−
i
~ t εk âk (6.67)

will not yield an exact solution. Nevertheless, it can serve as a reasonably good approximative
solution, provided that the modes uk and its corresponding energies εk properly take into account
the interacting part of the Hamiltonian (6.62).

For simplicity, let us focus on contact interactions, which reduce the non-local Hamilto-
nian (6.62) to a local one,

VI(x,y) = g δ(x− y) → Ĥ =

∫
d3x ψ̂†(x)Hxψ̂(x) +

g

2

∫
d3x ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (6.68)

and so our interacting system is described by a local field theory with Lagrangian density

L = i~ψ∗∂tψ − ~2

2m
(∂iψ

∗)(∂iψ)− V0(x)ψ
∗ψ − g

2
(ψ∗ψ)2. (6.69)

We will assume that the particles are bosons, and expand the quantum field ψ̂(x) (as in
Eq. (6.33)) into an orthonormal set of functions u0, u1, . . .:

ψ̂(x) = â0u0(x) +

∞∑
k=1

âkuk(x), where [âk, â
†
k′ ] = δkk′ (k, k′ = 0, 1, . . .). (6.70)

To select an optimal one-particle ground-state wave-function u0(x) we consider the N -particle
state

|ΨN 〉 = (â†0)
N

√
N !

|0〉 , or N -particle wave-function ΨN (x1, . . .xN ) = u0(x1) . . . u0(xN ), (6.71)

and minimize its energy expectation value. (This product state will not be a true lowest-energy
N -particle state, but it will represent a useful approximation thereof.) Since

ψ̂(x) |ΨN 〉 = u0(x) â0 |ΨN 〉 , 〈ΨN | ψ̂†(x) = u∗0(x) 〈ΨN | â†0, (6.72)

we have

〈ΨN | Ĥ |ΨN 〉 =
∫
d3xu∗0Hxu0 〈ΨN | â†0â0 |ΨN 〉+ g

2

∫
d3x (u∗0u0)

2 〈ΨN | â†0â
†
0â0â0 |ΨN 〉

=

∫
d3xu∗0Hxu0N +

g

2

∫
d3x (u∗0u0)

2N(N − 1), (6.73)

where we have used the fact that â†0â0 = n̂0 is the number operators of mode k = 0, and
â†0â

†
0â0â0 = â†0(â0â

†
0 − 1)â0 = n̂20 − n̂0.
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We consider a large number of particles N � 1, and define the condensate wave-function
ψ(x) =

√
Nu0(x), in terms of which the energy expectation value becomes functional of ψ and

ψ∗ (treated as independent fields)

EN [ψ,ψ∗] ≡ 〈ΨN | Ĥ |ΨN 〉 =
∫
d3x
(
ψ∗Hxψ +

g

2
(ψ∗ψ)2

)
, (6.74)

subject to the normalization constraint
∫
d3x |ψ(x)|2 = N . (It is worth to note that the expression

for EN coincides with the expression (6.68) for the Hamiltonian operator Ĥ if we formally replace
the quantum field ψ̂(x) with the classical field ψ(x).) The energy is minimal provided that

δ
(
EN − µ(

∫
d3xψ∗ψ −N)

)
δψ∗(x)

= Hxψ(x) + gψ∗(x)ψ2(x)− µψ(x) = 0, (6.75)

that is, if ψ(x) satisfies the so-called Gross-Pitaevskii equation(
− ~2

2m
∆x + V0(x) + g|ψ(x)|2

)
ψ(x) = µψ(x), (6.76)

where the Lagrange multiplier µ is determined from the normalization constraint.
This equation is used in practice to describe systems of bosons at low energies (Bose-Einstein

condensates). It resembles the time-independent Schrödinger equation with an additional non-
linear term g|ψ|2ψ, which accounts for the interparticle (contact) interactions. In Exercise 27 we
will find explicit solutions of Eq. (6.76) in one spatial dimension for V0 = 0 and g < 0 (attractive
interparticle interactions).
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6.3 Exercises
Exercise 23. Vacuum correlations. For any n, n′ = 1, . . . , N calculate

〈0| q̂nq̂n′ |0〉 and 〈0| q̂n |0〉 , given 〈~q|0〉 = ψ0(~q) = N exp

(
− 1

2~
~q TA ~q

)
, (6.77)

where N is a normalization factor such that 〈0|0〉 = 1, and the matrix A is symmetric positive-
definite.

Solution:

In order to calculate the integral

〈0| q̂nq̂n′ |0〉 =
∫
dNq 〈0|~q〉 〈~q| q̂nq̂n′ |0〉 =

∫
dNq qnqn′ |ψ0(~q)|2 = N 2

∫
dNq qnqn′ exp

(
− 1

~
~q TA ~q

)
(6.78)

we employ the method of generating functions to write

〈0| q̂nq̂n′ |0〉 = ~2
∂

∂jn

∂

∂jn′

∣∣∣∣
~j=~0

〈0| e 1
~ jmq̂m |0〉 , (6.79)

where
〈0| e 1

~ jmq̂m |0〉 = N 2

∫
dNq exp

(
− 1

~
~q TA ~q +

1

~
~j T ~q

)
, (6.80)

and ~j = (jm)Nm=1 is a vector of auxiliary variables. Now complete the square in the exponential,

−1

~
~q TA ~q +

1

~
~j T ~q = −1

~

(
~q − 1

2
A−1~j

)T
A
(
~q − 1

2
A−1~j

)
+

1

4~
~j TA−1~j (6.81)

(using the fact that AT = A ⇒ (A−1)T = A−1), and shift the integration variables to arrive at

〈0| e 1
~
~jT~̂q |0〉 = 〈0|0〉 exp

(
1

4~
~j TA−1~j

)
= exp

(
1

4~
~j TA−1~j

)
. (6.82)

From this generating function we obtain the sought-for vacuum expectation values as follows:

〈0| q̂nq̂n′ |0〉 = ~2
∂

∂jn

∂

∂jn′

∣∣∣∣
~j=~0

(
1 +

1

4~
~j TA−1~j + . . .

)
=

~
4

∂

∂jn

∂

∂jn′

∑
m,m′

(A−1)mm′jmjm′

=
~
4

∑
m,m′

(A−1)mm′(δmnδm′n′ + δmn′δm′n)

=
~
4

(
(A−1)nn′ + (A−1)n′n

)
=

~
2
(A−1)nn′ , (6.83)

and
〈0| q̂n |0〉 = ~

∂

∂jn

∣∣∣∣
~j=~0

(
1 +

1

4~
~j TA−1~j + . . .

)
= 0, (6.84)

since there is no term linear in ~j in the expansion of 〈0| e 1
~
~jT~̂q |0〉.
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Exercise 24. Two coupled quantum oscillators. Consider a quantum system of two coupled
harmonic oscillators described by the Hamiltonian

Ĥ =
p̂21
2M

+
p̂22
2M

+
κ0
2
q̂21 +

κ0
2
q̂22 +

κI
2
(q̂2 − q̂1)

2, κ0, κI > 0. (6.85)

1. Using the mode decomposition from Exercise 19 write the Hamiltonian in terms of modes’
creation and annihilation operators.

2. Write down the ground state wave-function.

3. Calculate the vacuum correlation 〈0| q̂1q̂2 |0〉, and find its behaviour for small or large
interaction constant κI .

Solution:

1. Recall that

U =

(
κ0 + κI −κI
−κI κ0 + κI

)
= VKVT , K =MΩ2 =

(
κ0 0
0 κ0 + 2κI

)
, V =

1√
2

(
1 1
1 −1

)
.

(6.86)
Then, according to Eq. (6.14),

Ĥ = ~ω1

(
â†1â1 +

1

2

)
+ ~ω2

(
â†2â2 +

1

2

)
, where ω1 =

√
κ0
M
, ω2 =

√
κ0 + 2κI

M
.

(6.87)

2. By Eqs. (6.19) and (6.20),

ψ0(~q) = N exp

(
− 1

2~
~q TA ~q

)
, (6.88)

with

A =MVΩVT =
M

2

(
1 1
1 −1

)(
ω1 0
0 ω2

)(
1 1
1 −1

)
=
M

2

(
ω1 + ω2 ω1 − ω2

ω1 − ω2 ω1 + ω2

)
. (6.89)

3. According to the formula (6.21) we need to calculate the inverse of A, A−1 = V(MΩ)−1VT .
Explicitly, we find

A−1 =
1

2M

(
1 1
1 −1

)( 1
ω1

0

0 1
ω2

)(
1 1
1 −1

)
=

1

2Mω1ω2

(
ω1 + ω2 ω2 − ω1

ω2 − ω1 ω1 + ω2

)
. (6.90)

The vacuum correlation between the two degrees of freedom is then given by

〈0| q̂1q̂2 |0〉 =
~
2
(A−1)1,2 =

~
4M

ω2 − ω1

ω1ω2
=

~
4
√
Mκ0

√
κ0 + 2κI −

√
κ0√

κ0 + 2κI
, (6.91)

which can be approximated for κI → 0 as

〈0| q̂1q̂2 |0〉 =
~

4
√
Mκ0

√
1 + 2κI

κ0
− 1√

1 + 2κI

κ0

≈ ~
4
√
Mκ0

κI
κ0
, (6.92)

and for κI → +∞ as
〈0| q̂1q̂2 |0〉 ≈

~
4
√
Mκ0

. (6.93)
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Exercise 25. Free and interacting Schrödinger field. Consider a complex one-component field
ψ(x) with action functional S = S0 + SI , where

S0[ψ,ψ
∗] =

∫
d4xL0 , L0 = i~ψ∗∂tψ − ~2

2m
(∂iψ

∗)(∂iψ)− V0(x)ψ
∗ψ (6.94)

is the ‘free’ action and ‘free’ Lagrangian (they don’t contain interparticle interactions), and

SI [ψ,ψ
∗] = −1

2

∫
dt d3x d3y ψ∗(x, t)ψ∗(y, t)VI(x,y)ψ(y, t)ψ(x, t) , VI(x,y) = VI(y,x),

(6.95)
is the ‘interacting part’ of the action.

1. Derive the Euler-Lagrange equations for the free action S0.

2. Derive the Euler-Lagrange equations for the full action S. (Mind its non-locality.)

Solution:

Note that since the action is real (up to a boundary term),

S∗ − S =

∫
d4x (−i~ψ∂tψ∗ − i~ψ∗∂tψ) = −i~

∫
d4x ∂t(ψψ

∗), (6.96)

the Euler-Lagrange equation for variation with respect to ψ is complex conjugate to that for ψ∗:

δS

δψ
=

(
δS∗

δψ∗

)∗

=

(
δS

δψ∗

)∗

= 0. (6.97)

Hence, we only need to calculate the variation δS
δψ∗ .

1. For the free action S0 we find an ordinary Schrödinger equation with potential V0:
δS0

δψ∗ =
∂L0

∂ψ∗ − ∂t
∂L0

∂(∂tψ∗)
− ∂i

∂L0

∂(∂iψ∗)

= i~∂tψ − V0(x)ψ − ∂t(0)− ∂i

(
− ~2

2m
∂iψ
)

= i~∂tψ −
(
− ~2

2m
∆+ V0(x)

)
ψ = 0 (6.98)

2. Denote x = (x, t), x′ = (x′, t′), y′ = (y′, t′), and calculate

δSI
δψ∗(x)

= −1

2

∫
dt′ d3x′ d3y′

δ
(
ψ∗(x′)ψ∗(y′)

)
δψ∗(x)

VI(x
′,y′)ψ(y′)ψ(x′)

= −1

2

∫
dt′ d3x′ d3y′

(
δ(x′ − x)ψ∗(y′) + ψ∗(x′)δ(y′ − x)

)
VI(x

′,y′)ψ(y′)ψ(x′)

= −
∫
d3y ψ∗(y, t)VI(x,y)ψ(y, t)ψ(x, t), (6.99)

where in the last step we used the assumption of symmetry of VI in its arguments. Hence,
the full action yields the equation of motion
δ(S0 + SI)

δψ∗ = 0 → i~
∂ψ

∂t
=
(
− ~2

2m
∆+ V0(x) +

∫
d3y ψ∗(y, t)VI(x,y)ψ(y, t)

)
ψ(x, t).

(6.100)
This equation is non-local — the interaction part represents the energy at point x due to
the field (the ‘density’ ψ∗ψ) integrated over the whole space.
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Exercise 26. Multi-particle wave-functions. From the expansion

ψ̂(x) =
∑
k

âkuk(x) for bosons, and ψ̂(x) =
∑
k

b̂kuk(x) for fermions, (6.101)

of the field operator in terms of an orthonormal set of functions, show that:

1. For bosonic fields

〈0| ψ̂(x1) . . . ψ̂(xN ) â†k1 . . . â
†
kN

|0〉 =
∑
σ∈SN

uk1(xσ(1)) . . . ukN (xσ(N)). (6.102)

2. For fermionic fields

〈0| ψ̂(x1) . . . ψ̂(xN ) b̂†kN . . . b̂
†
k1

|0〉 =
∑
σ∈SN

(sgnσ)uk1(xσ(1)) . . . ukN (xσ(N)). (6.103)

Solution:

1. We introduce auxiliary variables αk ∈ R (one for each mode), and consider the generating
series

〈0| ψ̂(x1) . . . ψ̂(xN ) e
∑

kαkâ
†
k |0〉 = 1

N !

∑
k1,...,kN

αk1 . . . αkN 〈0| ψ̂(x1) . . . ψ̂(xN ) â†k1 . . . â
†
kN

|0〉 ,

(6.104)
where all other terms in the expansion of the exponential (i.e., those with the number of
creation operators different from N) vanish under 〈0| . . . |0〉.
Another way of writing the left-hand side makes use of the Campbell identity (2.14)

exp

(
−
∑
k

αkâ
†
k

)
ψ̂(x) exp

(∑
k

αkâ
†
k

)
= ψ̂(x)+

[
ψ̂(x),

∑
k

αkâ
†
k

]
= ψ̂(x)+

∑
k

αkuk(x),

(6.105)
where we have used the fact that [ψ̂(x), â†k] = uk(x) (which commutes with everything, so
higher commutators vanish). Since 〈0| â†k = 0 and ψ̂(x) |0〉 = 0, we can write

〈0| ψ̂(x1) . . . ψ̂(xN ) e
∑

kαkâ
†
k |0〉

= 〈0| e−
∑

kαkâ
†
k ψ̂(x1)e

∑
kαkâ

†
k . . . e−

∑
kαkâ

†
k ψ̂(xN ) e

∑
kαkâ

†
k |0〉

= 〈0|
(
ψ̂(x1) +

∑
k1

αk1uk1(x1)
)
. . .
(
ψ̂(xN ) +

∑
kN

αkNukN (xN )
)
|0〉

= 〈0|
∑
k1

αk1uk1(x1) . . .
∑
kN

αkNukN (xN ) |0〉

=
∑

k1,...,kN

αk1 . . . αkN uk1(x1) . . . ukN (xN )

=
∑

k1,...,kN

αk1 . . . αkN
1

N !

∑
σ∈SN

uk1(xσ(1)) . . . ukN (xσ(N)). (6.106)

Since the series coefficients of expansions (6.104) and (6.106) must be equal (at every
monomial αk1 . . . αkN ) we obtain Eq. (6.102).
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2. The fermionic case is more subtle, although the general idea is the same as in the case of
bosons. To successfully implement the Campbell identity, the commutator[

ψ̂(x),
∑
k

βk b̂
†
k

]
=
∑
k,`

u`(x)
[
b̂`, βk b̂

†
k

]
=
∑
k,`

u`(x)
(
b̂`βk b̂

†
k − βk b̂

†
k b̂`

)
(6.107)

needs to reduce to a simple expression using the anticommutation rule {b`, b†k} = δ`k. To
this end we postulate that the βk are not ordinary complex numbers, but rather the so-
called Grassmann symbols (also known as Grassmann variables, Grassmann numbers) that
obey the anticommutation rules (the Grassmann algebra)

{βk, β`} = 0 and {βk, b̂`} = {βk, b̂†`} = 0 (∀k, `). (6.108)

(The modes uk(x) remain ordinary complex-valued functions that commute with every-
thing.)
With these definitions we obtain[

ψ̂(x),
∑
k

βk b̂
†
k

]
= −

∑
k,`

u`(x)βk{b̂`, b̂†k} = −
∑
k

uk(x)βk ,
[
β`, βk b̂

†
k

]
= 0, (6.109)

and so

exp

(
−
∑
k

βk b̂
†
k

)
ψ̂(x) exp

(∑
k

βk b̂
†
k

)
= ψ̂(x) +

[
ψ̂(x),

∑
k

βk b̂
†
k

]
= ψ̂(x)−

∑
k

uk(x)βk.

(6.110)
Hence, similarly as in (6.106) we obtain

〈0| ψ̂(x1) . . . ψ̂(xN ) e
∑

kβk b̂
†
k |0〉 = (−1)N

∑
k1,...,kN

uk1(x1) . . . ukN (xN )βk1 . . . βkN , (6.111)

while Eq. (6.104) has a fermionic analogue

〈0| ψ̂(x1) . . . ψ̂(xN ) e
∑

kβk b̂
†
k |0〉 = 1

N !

∑
k1,...,kN

〈0| ψ̂(x1) . . . ψ̂(xN )βkN b̂
†
kN
. . . βk1 b̂

†
k1

|0〉

=
−1

N !

∑
k1,...,kN

〈0| ψ̂(x1) . . . ψ̂(xN ) b̂†kN . . . βk1 b̂
†
k1

|0〉βkN

=
(−1)N

N !

∑
k1,...,kN

〈0| ψ̂(x1) . . . ψ̂(xN ) b̂†kN . . . b̂
†
k1

|0〉βk1 . . . βkN .

(6.112)

Comparing now (after antisymmetrization — due to anticommuting nature of βk’s) a par-
ticular term βk1 . . . βkN of the two expansions yields Eq. (6.103).
However strange they might seem, the Grassmann symbols are frequently used when dealing
with quantum field theory for fermions, especially in the path integral formulation.

Exercise 27. Gross-Pitaevskii equation in 1D. Find real solutions ψ(x) of the differential equa-
tion

− ~2

2m
ψ′′ + gψ3 = µψ, where g < 0, (6.113)
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and determine µ so that ∫
dxψ2(x) = N. (6.114)

Solution:

Casting Eq. (6.113) in the form

ψ′′ = −2m

~2
(µψ − gψ3) = − ∂

∂ψ

(µ
2
ψ2 − g

4
ψ4
)2m
~2

, (6.115)

which is analogous to the Newton’s law of classical mechanics ẍ = −∂xV (here ψ(x) ↔ x(t)), we
can immediately write, in analogy with the law of conservation of total mechanical energy,

1

2
(ψ′)2 +

2m

~2
(µ
2
ψ2 − g

4
ψ4
)
= C. (6.116)

In order to satisfy Eq. (6.114), ψ and ψ′ tend to 0 as x → ±∞, and hence C = 0. Moreover,
since g < 0, we must have µ < 0, and a multiplication by 2

ψ4 yields( ψ′

ψ2

)2
+

2m

~2
( µ
ψ2

− g

2

)
= (f ′)2 − 2m

~2
|µ| f2 + 2m

~2
|g|
2

= 0, where f ≡ 1

ψ
. (6.117)

This first-order differential equation for f(x) can be solved by separation of variables. How-
ever, it is faster to recall the identity sinh2 x− cosh2 x+ 1 = 0, and look for the solution in the
form

f(x) = α cosh
(
β(x− x0)

)
, where α, β > 0 and x0 ∈ R. (6.118)

The constants α and β are determined by plugging this ansatz into Eq. (6.117),

β =

√
2m

~2
|µ| , α =

√
|g|
2|µ|

, (6.119)

while x0 remains as an arbitrary integration constant.
To eliminate the Lagrange multiplier µ we evaluate the integral∫ +∞

−∞
dxψ2(x) =

∫ +∞

−∞
dx

1

α2 cosh2(βx)
=

1

α2β

[
tanh(βx)

]+∞
−∞ =

2

α2β
=

4

|g|

√
~2
2m

√
|µ| = N.

(6.120)
Altogether, we obtain the condensate wave-function (a ‘bright soliton’)

ψ(x) =
ψ(x0)

cosh(x−x0

L )
, L =

1

β
=

~√
2m|µ|

=
~2

2m

4

N |g|
, (6.121)

which represents a cloud of bosons centred around point x0, and with the size is of the order L.

Remarks:

The arbitrariness of the point x0 reflects the symmetry of the system (namely, of the La-
grangian (6.69) with V0 = 0) under spatial translations. Once the location of the cloud x0 is
decided, this symmetry is spontaneously broken (the cloud itself is not translationally invariant).
The resulting location, however, cannot be deduced from the Lagrangian of the system (hence the
adjective ‘spontaneous’). In practice the Bose-Einstein condensates are trapped in an external
potential V0(x), e.g., ω2 (x−x0)

2, which decides the location of the cloud. The explicit dependence
of V0 (and hence the Lagrangian) on x then breaks the translational symmetry explicitly.



Chapter 7

Canonical quantization of
Klein-Gordon field

Let us turn back to natural units ~ = c = 1.
The simplest model of relativistic field theory is a real scalar one-component field described

by the Klein-Gordon Lagrangian (density)

L (φ, ∂µφ) =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2. (7.1)

This falls within the category of ‘free’ field theories, whose Lagrangian is at most quadratic in
fields and their derivatives, and hence leads to linear equations of motion. (We will now be
dealing with free fields for some time — until Chapter 11.) The corresponding Hamiltonian is
given (according to Exercise 21) by

π(x) = ∂tφ(x) → H =

∫
d3x

1

2

(
π2 + (∂iφ)(∂iφ) +m2φ2

)
. (7.2)

Quantization consists in promoting the classical fields φ and π to operators, and postulating the
equal-time canonical commutation relations

[φ̂(x, t), π̂(y, t)] = i δ(x− y) and [φ̂(x, t), φ̂(y, t)] = [π̂(x, t), π̂(y, t)] = 0. (7.3)

(The use of commutators, rather than anticommutators, is in fact required by special relativity, as
will be discussed in Section 9.1.) Real-valuedness of the classical field φ translates to hermiticity
on the quantum level: φ̂† = φ̂. The classical Hamilton’s canonical equations of motion derived
in Exercise 21 turn into the quantum Heisenberg equations

∂tφ̂ = π̂ , ∂tπ̂ = −m2φ̂+ ∂i∂iφ̂, implying (∂µ∂µ +m2)φ̂(x) = 0, (7.4)

which is the (real) Klein-Gordon equation for an operator-valued function φ̂.
In this introductory course we study quantum fields by standard methods of quantum me-

chanics extended to infinite-dimensional systems. The central role is therefore assumed by the
canonical variables and the total Hamiltonian (the total energy of the system), which generates
time evolution. This approach, referred to as ‘canonical quantization’, singles out a preferred
time coordinate, and is therefore not manifestly Lorentz invariant. (The fields in equal-time com-
mutation relations (7.3) are taken simultaneously with respect to this particular time ‘slicing’.)

78



CHAPTER 7. CANONICAL QUANTIZATION OF KLEIN-GORDON FIELD 79

Alternatively, quantization can be carried out with the Feynman path integral, which sums
over all histories in the configuration space, weighted by phase factors e i

~S . In the case of
local field theory the action S =

∫
d4xL features a Lagrangian density L , which for relativistic

theories is a scalar under Lorentz transformations. This approach is manifestly Lorentz invariant,
but requires familiarity with field-theoretic path integrals. It will be explored in the advanced
quantum field theory course (KTPA2).

7.1 Mode expansion of Klein-Gordon field
To study quantum theory of the Klein-Gordon field we note that its Hamiltonian (7.2) can be
cast in the form

H =

∫
d3x

π2(x)

2
+

1

2

∫
d3x d3y φ(x)U(x,y)φ(y), where U(x,y) = (−∆x +m2)δ(x− y),

(7.5)
which resembles the Hamiltonian of a system of coupled oscillators,

H(qn, pn) =
∑
n

p2n
2M

+
1

2

∑
n,n′

Unn′qnqn′ , (7.6)

studied on the classical level in Section 5.1, and on the quantum level in Section 6.1. The
(generalized) function of two variables U(x,y) is a continuum analogue of the ‘potential energy
matrix’ (or ‘stiffness matrix’) Unn′ . In a continuum sense, it describes homogeneous nearest-
neighbour coupling in a three-dimensional space, where each point hosts one degree of freedom
φ(x) (recall Section 5.1.3, where we studied the continuum limit of a linear chain). The mass M
of the discrete oscillators does not appear in the Klein-Gordon Hamiltonian (7.5) (it is absorbed
in the light velocity c = 1). Note that M has nothing to do with the parameter m of the Klein-
Gordon theory, which represents the mass of field excitations entering the relativistic dispersion
relation pµpµ = m2.

Let us determine normal modes of the Klein-Gordon field theory. The eigenvalue problem for
the ‘continuum matrix’ U(x,y) can be stated in analogy with the more common discrete case:∑

n′

Unn′vn′ = λ vn  
∫
d3y U(x,y)f(y) = (−∆x +m2)f(x) = λ f(x). (7.7)

This differential equation is clearly solved by the plane waves

fp(x) =
eip·x

(2π)3/2
, λp = p2 +m2 = ω2

p (p ∈ R3). (7.8)

(It is convenient to use complex-valued modes in what follows.) It is worth to note that the
function of two variables F (x,p) ≡ fp(x), where p enumerates the various modes, plays the role
of the ‘matrix of normal modes’ V = (Vnk) in Eq. (5.8). In analogy with the discrete case we
write

qn(t) =
∑
k

Vnkηk(t)  φ(x, t) =

∫
d3pF (x,p)φ̃(p, t) =

∫
d3p

(2π)3/2
eip·xφ̃(p, t). (7.9)

where the ‘continuum normal coordinates’ φ̃(p, t), as it turns out, stand for the three-dimensional
(i.e., spatial) Fourier transform of the Klein-Gordon field φ(x, t). Since φ(x, t) is real-valued, we
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observe that∫
d3p

(2π)3/2
eip·xφ̃(p, t) =

∫
d3p

(2π)3/2
e−ip·xφ̃∗(p, t) → φ̃∗(p, t) = φ̃(−p, t). (7.10)

The continuum analogues of orthonormality and completeness relations (5.10) (extended to com-
plex domain) are:

orthonormality : (V†V)kk′ = V ∗
nkVnk′ = δkk′

 
∫
d3xF ∗(x,p)F (x,p′) =

∫
d3x

(2π)3
ei(p

′−p)·x = δ(p′ − p),

completeness : (VV†)nn′ = VnkV
∗
n′k = δnn′

 
∫
d3pF (x,p)F ∗(x′,p) =

∫
d3p

(2π)3
eip·(x−x′) = δ(x− x′). (7.11)

Normal coordinates oscillate in time with their respective angular frequencies (as in Eq. (6.7)).
In our continuum (and complex) case this means that, on the quantum level,

ˆ̃
φ(p, t) =

1√
2ωp

(
âp e

−iωpt + â†−p e
iωpt

)
, where ωp =

√
p2 +m2, (7.12)

and where the minus sign in â†−p ensures the reality constraint ˆ̃
φ†(p, t) =

ˆ̃
φ(−p, t). A general

solution of the equations of motion (7.4) (i.e., of the Klein-Gordon equation) is then given by
(cf. Eq. (6.17))

φ̂(x, t) =

∫
d3p

eip·x√
(2π)32ωp

(
âp e

−iωpt + â†−p e
iωpt

)
=

∫
d3p√

(2π)32ωp

(
âp e

−iωpt+ip·x + â†−p e
iωpt+ip·x

)
. (7.13)

The substitution p → −p in the second integral then leads to the standard form of the mode
expansion of a one-component real Klein-Gordon field

φ̂(x, t) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + â†p e
ip·x
)
, where p0 = ωp. (7.14)

This is a general solution of the Klein-Gordon equation (7.4), which can be also derived by
solving the Klein-Gordon equation directly (see Exercise 28). The two terms in the bracket are
Hermitian conjugated so this expression for φ̂(x) is clearly Hermitian.

The occurrence of two terms in the mode expansion (7.14) signals a qualitative difference
between relativistic field theories and the non-relativistic Schrödinger field studied in Section 6.2,
whose mode expansion is ψ̂(x, t) =

∑
k âke

− i
~ t εkuk(x). This difference can be traced back to

the time derivative term in the Lagrangian, which in the case of Klein-Gordon field, Eq. (7.1),
reads (∂tφ)

2, yielding a second-order-in-time (Klein-Gordon) equation of motion, whereas in the
non-relativistic case, Eq. (6.24), the term ψ∗∂tψ yields an equation of motion that is of first-order
in time derivative (the Schrödinger equation).

The operator-valued amplitudes â†p and âp are (time-independent) creation and annihilation
operators of the respective modes fp(x) whose commutation relations read (in analogy with the
discrete case, Eq. (6.13))

[âp, â
†
p′ ] = δ(p− p′) and [âp, âp′ ] = [â†p, â

†
p′ ] = 0. (7.15)
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The total Hamiltonian operator is given by an integral over all normal modes (cf. Eqs. (6.5)
and (6.14)),

Ĥ =

∫
d3p

ωp

2

(
â†pâp + âpâ

†
p

)
. (7.16)

This result is confirmed in Exercise 28 by explicit substitution of the mode expansion of φ̂(x, t)
into (quantized) formula (7.2). A use of the commutation relation âpâ

†
p′ = â†p′ âp + δ(p− p′) to

formally rewrite
Ĥ =

∫
d3pωp â

†
pâp + δ(0)

∫
d3p

ωp

2
(7.17)

reveals an infinite vacuum energy 〈0| Ĥ |0〉 = δ(0)
∫
d3p

ωp

2 . To avoid this contribution we define
the normal-ordered Hamiltonian

:Ĥ : = Ĥ − 〈0| Ĥ |0〉 =
∫
d3pωp â

†
pâp. (7.18)

In general, the normal ordering : . . . : is a linear operation that pushes all creation operators to
the left of annihilation operators, thus producing an operator with vanishing vacuum expectation
value 〈0| : . . . : |0〉. However, there is a subtlety revealed by the following simple calculation for
one degree of freedom ([â, â†] = 1):

: ââ† : = â†â 6= :1 + â†â : = 1 + â†â, (7.19)

i.e., one may not use commutation relations under normal ordering. Rather, all (bosonic) oper-
ators should be treated as commuting — they can be written in any order, since, after all, they
are put to a specific order by the normal ordering.

Likewise, we normally order all components of the total four-momentum operator:

P̂ν =

∫
d3x : T̂ 0

ν : , where Tµν = ∂µφ∂νφ− δµν
1

2
(∂ρφ∂

ρφ−m2φ2) (7.20)

is the Klein-Gordon energy-momentum tensor (5.65). For the zeroth component we have P̂0 = :
Ĥ : given by Eq. (7.18), and for the spatial part we find (in Exercise 28)

P̂i =

∫
d3x : π̂∂iφ̂ : =

∫
d3p pi â

†
pâp, (7.21)

so in total we have
P̂µ =

∫
d3p pµ â

†
pâp, where p0 = ωp. (7.22)

The elimination of infinite vacuum energy by means of normal ordering deserves a few com-
ments. The divergent factor δ(0) can be related via

δ(p) =

∫
d3x

(2π)3
eip·x → δ(0) =

∫
d3x

(2π)3
=

V

(2π)3
(7.23)

to the volume V of the R3 space. One could regularize this divergence by using a box of edge
length L instead of R3, and imposing periodic boundary conditions on the fields. (Periodic
boundary conditions are easier to discuss than, for example, Dirichlet boundary conditions. In
the end we are interested in the limit L → ∞, when the details on the boundary should not
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matter.) The periodicity constrains the normal modes fp(x) ∝ eip·x by the conditions eipiL = 1
(∀i), resulting in a discrete set of modes

fk(x) =
eip·x

L3/2
, with ωk =

√
p2 +m2, where p =

2π

L
k (k ∈ Z3). (7.24)

These are normalized to the (three-dimensional) Kronecker δk,k′ = δk1,k′1δk2,k′2δk3,k′3 instead of
the Dirac δ(p− p′), and so are the corresponding creation and annihilation operators:∫

d3x f∗k(x)fk′(x) = δk,k′ , [âk, â
†
k′ ] = δk,k′ . (7.25)

In the large-L limit, identifying âp = L3/2âk, the discrete Hamiltonian (formed by a sum over
the discrete modes labelled by k) turns into the integral over p ∈ R3 in Eq. (7.16):

Ĥ =
∑
k∈Z3

ωk

2

(
â†kâk+ âkâ

†
k

)
=
∑
k∈Z3

ωp

2L3

(
â†pâp + âpâ

†
p

)∣∣∣
p= 2π

L k

L→∞−−−−→
∫
d3p

ωp

2

(
â†pâp+ âpâ

†
p

)
.

(7.26)
By default we will formulate quantum field theory in infinite volume, keeping in mind that the
finite-L ‘box regularization’ can be adopted if required.

In an infinite volume it is more sensible to talk about vacuum energy density

〈0| Ĥ |0〉
V

=
δ(0)

(2π)3δ(0)

∫
d3p

ωp

2
=

1

2(2π)3

∫
d3p

√
p2 +m2, (7.27)

which, however, is still infinite due to the infinite range of integration. (In a finite box we would
encounter an equally infinite sum over k ∈ Z3.) This divergence could be tamed by introducing
an upper limit on the value of spatial momentum |p| (an ‘ultraviolet cut-off’, usually denoted
by Λ), which is equivalent to a minimum wavelength λmin of the normal modes (due to the
relation |p| = 2π

λ ). A nonzero minimum wavelength would stem from a certain granularity
(discreteness) of space. For example, if the space were a rectangular lattice with distance a
between neighbouring points, λmin = 2a (see [9, Ch. 2.1.1]), and the integration would only
involve momenta with |p| ≤ Λ = π

a . Here a is often considered to be of the order of Planck
length

`Planck =

√
~G
c3

.
= 1.6× 10−35 m .

= 10−20 × (proton diameter). (7.28)

A common practice in quantum field theory is to regard the space as a continuum and neglect
the divergent momentum integral (7.27) by adopting normal ordering. (Later on we shall see
that in interacting quantum field theory many other divergent momentum integrals appear, and
these are dealt with by the method of renormalization.)

The constant vacuum energy (density) can be neglected if we are interested only in energy
differences between various states, which will be the case in this course. However, in general
relativity every energy, in principle, contributes to the Einstein equations and hence influences the
spacetime dynamics. The quantum-field-theoretic vacuum contributes to Einstein’s cosmological
constant by an amount that is, theoretically, some 120 orders of magnitude larger than the
value determined experimentally by observing the accelerated expansion of the universe. This
discrepancy between theory and experiment is called the ‘cosmological constant problem’ — the
“worst theoretical prediction in the history of science”.

A more down-to-Earth aspect of the vacuum energy is that it refers to certain choice of
boundary conditions, for example, the size of the box that the field occupies. If the boundary
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varies, the vacuum energy varies as well, and the system’s tendency to minimize it results in a
force exerted on the boundary. Although tiny, for quantized electromagnetic field constrained
between two parallel conducting plates (so that the electric field components parallel to the plates
vanish) this so-called Casimir effect has been measured in laboratory. In Exercise 30 we discuss
a simplified version of this setup: one-component massless scalar field in one spatial dimension.

7.2 Multiplet of scalar fields
We will study a multicomponent Klein-Gordon field Φ = (φr) described by the Lagrangian

L (φr, ∂µφr) =
∑
r

(
1

2
(∂µφr)(∂

µφr)−
1

2
m2φ2r

)
=

1

2
(∂µΦ

T )(∂µΦ)− 1

2
m2ΦTΦ, (7.29)

which is a sum of single-component Lagrangians (7.1). The individual (real) field components φr
are independent of one another (there are no terms containing products of different components).
Since all field components have the same mass parameter m this theory is invariant under internal
rotations (generated by Hermitian purely imaginary matrices Ta)

Φ′(x) = exp (iλaTa)Φ(x). (7.30)

Canonical quantization proceeds similarly as in the one-component case. We find the canon-
ical momenta, and postulate equal-time commutation relations:

π̂r = ∂tφ̂r , [φ̂r(x, t), π̂s(y, t)] = i δrs δ(x− y). (7.31)

(The commutators involving other combinations of canonical fields vanish.) A general solution
of the equations of motion (∂µ∂µ +m2)φ̂r(x) = 0 (∀r) has the form of a mode expansion

φ̂r(x, t) =

∫
d3p√

(2π)32ωp

(
âr,p e

−ip·x + â†r,p e
ip·x
)

, p0 = ωp =
√

p2 +m2, (7.32)

where the creation and annihilation operators (now labelled by the field component index as well
as the spatial momentum) satisfy the commutation relations

[âr,p, â
†
s,p′ ] = δrs δ(p− p′) and [âr,p, âs,p′ ] = [â†r,p, â

†
s,p′ ] = 0. (7.33)

A new feature not present in the one-component case is the appearance of conserved currents
and charges that we derived in Section 5.4.3 in classical context. In quantum theory they are
the operators

ĵµa = −i ∂L̂

∂(∂µφr)
(Ta)rsφ̂s = −i(∂µφ̂r)(Ta)rsφ̂s,

Q̂a =

∫
d3x : ĵ0a : = −i

∫
d3x : π̂r(Ta)rsφ̂s : , (7.34)

where in the definition of the conserved charges we again include normal ordering, so that
Q̂a |0〉 = 0. Plugging in the mode expansion (7.32) one can show (see Exercise 31) that

Q̂a =

∫
d3p â†r,p(Ta)rsâs,p. (7.35)

It is then interesting to note that the charge operators Q̂a obey the same commutation relations
as the rotation generators Ta (see Exercise 32):

[Ta,Tb] = fabcTc ⇒ [Q̂a, Q̂b] = fabcQ̂c. (7.36)
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7.2.1 Complex scalar field
Let us consider a two-component field Φ. Out of the two real components we can define a complex
field ϕ (and its conjugate ϕ∗) as in Eq. (5.77):(

ϕ
ϕ∗

)
= UΦ, where Φ =

(
φ1
φ2

)
and U =

1√
2

(
1 i
1 −i

)
is unitary. (7.37)

The Lagrangian (7.29) then takes the form

L =
1

2
(∂µΦ

†)(∂µΦ)− m2

2
Φ†Φ =

1

2
∂µ(UΦ)

†∂µ(UΦ)− m2

2
(UΦ)†UΦ = (∂µϕ

∗)(∂µϕ)−m2ϕ∗ϕ.

(7.38)
Correspondingly, we define the creation and annihilation operators (suppressing the label p for
a moment) (

â

b̂

)
= U

(
â1
â2

)
=

1√
2

(
â1 + iâ2
â1 − iâ2

)
→

(
â†

b̂†

)
=

1√
2

(
â†1 − iâ†2
â†1 + iâ†2

)
, (7.39)

and observe that the mode expansion of the complex field reads

ϕ̂(x, t) =
1√
2

(
φ̂1(x, t) + iφ̂2(x, t)

)
=

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + b̂†p e
ip·x
)
,

ϕ̂†(x, t) =

∫
d3p√

(2π)32ωp

(
b̂p e

−ip·x + â†p e
ip·x
)
. (7.40)

The creation and annihilation operators satisfy the commutation relations

[âp, â
†
p′ ] = [b̂p, b̂

†
p′ ] = δ(p− p′) and all other commutators zero, (7.41)

which follows by a straightforward calculation. For example,

[âp, â
†
p′ ] =

1

2
[â1,p + iâ2,p, â

†
1,p′ − iâ†2,p′ ] =

1

2

(
[â1,p, â

†
1,p′ ] + [â2,p, â

†
2,p′ ]

)
= δ(p− p′). (7.42)

The Lagrangian (7.38) is clearly invariant under the internal transformation ϕ′ = eiλϕ,
ϕ∗′ = e−iλϕ∗. This is a U(1) (complex) equivalent of an SO(2) (two-component real) internal
rotation by angle λ generated by the matrix

T =

(
0 i
−i 0

)
, satisfying UTU† =

(
1 0
0 −1

)
(7.43)

(see Section 5.4.3). The Noether current corresponding to this internal symmetry is

jµ = −i ∂L

∂(∂µϕ)
ϕ+ i

∂L

∂(∂µϕ∗)
ϕ∗ = −iϕ ∂µϕ∗ + iϕ∗∂µϕ. (7.44)

The total Noether charge operator Q̂ expressed in terms of creation and annihilation operators
can be read-off from Formula (7.35):

Q̂ =

∫
d3p

(
â†1,p â†2,p

)
T

(
â1,p
â2,p

)
=

∫
d3p

(
â†p b̂†p

)
UTU†

(
âp
b̂p

)
=

∫
d3p

(
â†pâp − b̂†pb̂p

)
.

(7.45)
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Since the complex Klein-Gordon field possesses a conserved Noether charge, it is also referred
to as ‘charged Klein-Gordon field’, while the real Klein-Gordon field is referred to as ‘neutral
Klein-Gordon field’.

Finally, let us note that the total four-momentum operator of the multicomponent field (φr)
(with Lagrangian (7.29)) is given simply by a sum of the four-momentum operators (7.22) for
each component (recall the general formula for the energy-momentum tensor (5.60)). In the
present case of real two-component (or complex one-component) field this gives

P̂µ =

∫
d3p pµ

(
â†1,pâ1,p + â†2,pâ2,p

)
=

∫
d3p pµ

(
â†pâp + b̂†pb̂p

)
, where p0 = ωp. (7.46)

Note that [Q̂, P̂µ] = 0, since all number operators mutually commute.

7.3 States and particle interpretation
The Klein-Gordon field is a continuous system of coupled oscillators whose normal modes are
labelled by p ∈ R3. Each mode behaves as a one-dimensional harmonic oscillator with frequency
ωp whose nth energy level is reached by n-fold application of the creation operator â†p on the
vacuum state |0〉 (recall Section 6.1, in particular, Eq. (6.8)). This creates a collective excitation
of the field, whose spatial variation is given by the shape of the mode fp(x) ∝ eip·x. (For a
multicomponent field, each component can be excited separately by its corresponding creation
operator â†r,p.)

The system’s Hilbert space is spanned by the (collective) states that arise by applying all
possible (finite) strings of creation operators on the vacuum, thus replicating the construction of
the bosonic Fock space for non-relativistic Schrödinger field in Section 6.2. This suggests that
the excited states of the collection of oscillators (i.e., of the quantum Klein-Gordon field) be
interpreted as relativistic multi-particle states — adding a quantum of energy ωp in the mode p
of the field component r is understood as adding a particle of ‘type’ r with energy ωp and spatial
momentum p.

The claim that the mode label p is to be interpreted as spatial momentum is supported by
the following analysis of total four-momentum operator P̂µ. (For definiteness we will consider
the complex Klein-Gordon field ϕ̂.) Expression (7.46) and the commutation relations (7.41) yield

[P̂µ, â
†
p] =

∫
d3p′ p′µ

[
â†p′ âp′ + b̂†p′ b̂p′ , â†p

]
=

∫
d3p′ p′µâ

†
p′δ(p

′ − p) = pµâ
†
p, (7.47)

and similarly for b̂†p. Hermitian conjugation (keeping in mind that P̂ †
µ = P̂µ) produces the

corresponding relations for annihilation operators. Altogether,

[P̂µ, â
†
p] = pµâ

†
p , [P̂µ, âp] = −pµâp and [P̂µ, b̂

†
p] = pµb̂

†
p , [P̂µ, b̂p] = −pµb̂p,

(7.48)
where, just to remind, p0 = ωp. These relations, and the fact that P̂µ is normal-ordered (so
that P̂µ |0〉 = 0), allow us to easily determine (using the commutator Leibniz rule) the total
four-momentum of a state created from the vacuum by an arbitrary string of operators â†p, b̂†p:

P̂µ â†p1
· · · â†pna

b̂†p′
1
· · · b̂†p′

nb

|0〉 =
[
P̂µ , â†p1

· · · â†pna
b̂†p′

1
· · · b̂†p′

nb

]
|0〉

= (pµ1 + · · ·+ pµna
+ p′

µ
1 + · · ·+ p′

µ
nb
) â†p1

· · · â†pna
b̂†p′

1
· · · b̂†p′

nb

|0〉 .
(7.49)



CHAPTER 7. CANONICAL QUANTIZATION OF KLEIN-GORDON FIELD 86

The spatial part of this relation (µ = i) asserts that adding an excitation to mode p increases
the total momentum by the amount p, i.e., a particle with momentum p is added to the system.

When we combine the knowledge of relations (7.48) with the mode expansion (7.40), we
obtain

[P̂µ, ϕ̂(x)] =

∫
d3p√

(2π)32ωp

(
[P̂µ, âp] e

−ip·x + [P̂µ, b̂
†
p] e

ip·x
)
= −i∂µϕ̂(x), (7.50)

which for µ = 0 recovers the Heisenberg equation of motion

∂tϕ̂(x) = −i[ϕ̂(x), Ĥ]. (7.51)

Contracting Eq. (7.50) with a spacetime vector aµ, and using the Campbell identity (2.14), we
relate the field operator ϕ̂ at different spacetime points:

[iaµP̂µ, ϕ̂(x)] = aµ∂µϕ̂(x) → eia
µP̂µ ϕ̂(x)e−ia

µP̂µ =
∞∑
n=0

(aµ∂µ)
n

n!
ϕ̂(x) = ϕ̂(x+ a). (7.52)

(Here we note that the infinite series is actually the Taylor expansion of ϕ̂ around point x.)
We can make similar observations for the charge operator Q̂ (given by (7.45)) in place of P̂µ.

First, we find the commutators

[Q̂, â†p] = â†p , [Q̂, âp] = −âp and [Q̂, b̂†p] = −b̂†p , [Q̂, b̂p] = b̂p. (7.53)

From the mode expansion (7.40) and the Campbell identity (2.14) we then obtain the relation

[Q̂, ϕ̂(x)] = −ϕ̂(x) → eiλQ̂ϕ̂(x)e−iλQ̂ =

∞∑
n=0

(−iλ)n

n!
ϕ̂(x) = e−iλϕ̂(x). (7.54)

The total charge of a state created from the vacuum by a string of operators â†p, b̂†p reads

Q̂ â†p1
· · · â†pna

b̂†p′
1
· · · b̂†p′

nb

|0〉 = (na − nb) â
†
p1

· · · â†pna
b̂†p′

1
· · · b̂†p′

nb

|0〉 , (7.55)

where we have used the fact that Q̂ |0〉 = 0, and the Leibniz rule. This result can be easily
deduced already from Eq. (7.45), since â†pâp is the number operator for particles of type a with
momentum p, and so n̂a =

∫
d3p â†pâp is the number operator for the type-a particles regardless

of their momenta. Similarly, for type-b particles the number operator is n̂b =
∫
d3p b̂†pb̂p, and

hence Q̂ = n̂a − n̂b.
The operators â†p create a particle with charge +1, and four-momentum (ωp,p), while the

operator b̂†p creates particles with charge −1, and the same four-momentum (ωp,p). The b
particles therefore are called the antiparticles of the a particles. Particles described by a real-
valued Klein-Gordon field do not have antiparticles (one may as well say that they “are their
own antiparticles”). In particle physics, a charged scalar field describes, for example, π-mesons
(pions) π+ and π−, while a neutral scalar field describes the pion π0. These are mediators of the
nuclear force (the residual strong force) that holds protons and neutrons together in a nucleus.
In this example the Noether charge is the usual electric charge. Nevertheless, even electrically
neutral particles can have antiparticles because other types of charges can arise from internal
symmetries. For example, the electrically neutral K meson (kaon) K0 has an antiparticle K̄0

with opposite ‘strangeness’.
In this section we have given a particle interpretation to the quantized Klein-Gordon field,

which we originally introduced merely as a continuous system of coupled oscillators. This ap-
proach is quite the opposite of what was done in Section 6.2, i.e., the ‘second quantization’,
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where we started with a system of quantum-mechanical particles and developed the formalism
of non-relativistic quantum field theory to describe them more efficiently.

In general, it is really the concept of a quantum field that is more fundamental. (Quantum
field theory is a quantum theory of fields, not particles.) For free field theories (i.e., quadratic
Lagrangians) the normal mode decomposition allows to set up a particle interpretation of states,
however, for interacting field theories (containing higher than quadratic terms in the Lagrangian)
normal modes can be used only as an approximation and particle interpretation becomes problem-
atic. Still, in most cases we will encounter, the interaction terms can be treated as perturbations
added to the free Lagrangian, and the particle interpretation is justified (and indeed useful) at
least on the perturbative level.

Another issue with the particle interpretation is that it depends on an observer. What an
inertial observer in Minkowski spacetime calls the vacuum is in fact a state that an observer
moving with acceleration a describes as a thermal bath at temperature T , where the mean
number of particles with energy E is given by the Bose-Einstein distribution

n(E) =
1

exp
(

E
kBT

)
− 1

, where T

a
=

~
2πckB

.
= 4× 10−21K. (7.56)

This so-called Unruh effect (to be discussed in detail in Chapter 13.2) is rather small and so
far has not been experimentally detected; 1 Kelvin corresponds to an acceleration of the order
1020 ms−2.

7.3.1 Relativistic normalisation and one-particle states
Before closing the chapter on Klein-Gordon field let us make a few observations about relativistic
particle states and their normalization.

Consider a Lorentz-invariant function f(p), and write an integral∫
d4p θ(p0)δ(p

2 −m2)f(p) =

∫
d3p

2ωp
f(ωp,p), (7.57)

where θ is the Heaviside step function, and we employed formula (7.72). Since the left-hand side is
invariant under (proper orthochronous) Lorentz transformations, we identify a Lorentz-invariant
three-dimensional integration measure d3p

2ωp
. Moreover, writing

1 =

∫
d3p δ(p− q) =

∫
d3p

2ωp
2ωpδ(p− q) (7.58)

then reveals a Lorentz-invariant modification of the three-dimensional delta function, 2ωpδ(p−q).
The one-particle relativistic wave-function corresponding to a state â†p |0〉 is constructed sim-

ilarly as in the non-relativistic case, Eq. (6.39),

〈0| φ̂(x)â†p |0〉 =
∫

d3p′√
(2π)32ωp′

〈0| âp′ â†p |0〉 e−ip
′·x =

e−ip·x√
(2π)32ωp

. (7.59)

(Here φ̂ is a real field for simplicity, but the discussion extends to multicomponent or complex
Klein-Gordon fields in a straightforward manner.) It is convenient to modify the normalization
and define the one-particle states

|p〉 ≡
√
(2π)32ωp â

†
p |0〉 , such that 〈0| φ̂(x) |p〉 = e−ip·x. (7.60)
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These states are normalised in a relativistically invariant way:

〈p|q〉 =
√
(2π)32ωp

√
(2π)32ωq 〈0| âpâ†q |0〉 = (2π)32ωpδ(p− q). (7.61)

For multi-particle states |p1,p2, . . .〉 we include for each particle with momentum p a factor√
(2π)32ωp, and should there be several, say n, particles with the same momentum we also

multiply by 1√
n!

(see Eq. (6.40)).
Finally, observe that if the field operator φ̂(x) satisfies the Klein-Gordon field equation of

motion (7.4), then the one-particle wave-function 〈0| φ̂(x) |α〉, where

|α〉 =
∫
d3pα(p) |p〉 (7.62)

is a wave-packet characterized by an arbitrary function α(p), automatically satisfies the Klein-
Gordon wave equation (1.19):

(∂µ∂µ +m2)φ̂(x) = 0 → (∂µ∂µ +m2) 〈0| φ̂(x) |α〉 = 0. (7.63)

The field dynamics, which was determined by our choice of Lagrangian (7.1), therefore cor-
rectly reproduces the one-particle dynamics established within relativistic quantum mechanics.
Such correspondence is an important guiding principle for the choice of quantum field theory
Lagrangians.
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7.4 Exercises
Exercise 28. Mode expansion from Klein-Gordon equation. Write a general solution of the
(operator-valued) Klein-Gordon equation

(∂µ∂µ +m2)φ̂(x) = 0 (7.64)

as a superposition of plane waves, and recover the mode expansion (7.14).

Solution:

A plane wave that satisfies the Klein-Gordon equation is of the form

Â(p) e−ip·x, where pµpµ = m2. (7.65)

A general superposition of these waves (that respects the dispersion relation) reads

φ̂(x) =

∫
d4p δ(pµpµ −m2)Â(p) e−ip·x. (7.66)

Now recall that for a function f(t) composed with δ-function the following identity holds:

δ(f(t)) =
∑
i

δ(t− ti)

|f ′(ti)|
, (7.67)

where the sum extends over all roots of f , f(ti) = 0, and it is assumed that f ′(ti) 6= 0. To
understand this formula, note that δ(f(t)) vanishes unless f(t) = 0, and in the neighbourhood
Ii of a zero point ti we can make use of the Taylor expansion of f ,

δ(f(t)) = δ(f(ti)︸︷︷︸
=0

+f ′(ti)(t− ti) + . . .) =
δ(t− ti)

|f ′(ti)|
(t ∈ Ii). (7.68)

Summing the right-hand side over i we obtain a function that equals δ(f(t)) for all t ∈ R, hence
the identity (7.67). More rigorously, since f is monotonous on each (small enough) interval Ii,
taking an arbitrary test function ϕ we can write∫

R
dt δ(f(t))ϕ(t) =

∑
i

∫
Ii

dt δ(f(t))ϕ(t), (7.69)

and perform the substitution u = f(t) in each of the sub-integrals:∫
Ii

dt δ(f(t))ϕ(t) =

∫
f(Ii)

du
δ(u)

|f ′(f−1(u))|
ϕ(f−1(u)) =

ϕ(ti)

|f ′(ti)|
=

∫
R
dt
δ(t− ti)

|f ′(ti)|
ϕ(t). (7.70)

Since ϕ is arbitrary we obtain the equality (7.67).
In Eq. (7.66) we have (denoting ωp =

√
p2 +m2)

f(p0) = pµpµ −m2 = p20 − ω2
p = (p0 − ωp)(p0 + ωp) , f ′(p0) = 2p0, (7.71)

and so
δ(pµpµ −m2) =

δ(p0 − ωp)

2ωp
+
δ(p0 + ωp)

2ωp
. (7.72)
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Hence, we can carry out the p0 integration and find

φ̂(x) =

∫
d3p

2ωp

∫
dp0

(
δ(p0 − ωp) + δ(p0 + ωp)

)
Â(p) e−ip·x

=

∫
d3p

2ωp

(
Â(ωp,p) e

−iωpt+ip·x + Â(−ωp,p) e
iωpt+ip·x

)
=

∫
d3p

2ωp

(
Â(ωp,p) e

−ip·x + Â(−ωp,−p) eip·x
)
, (7.73)

where in the last expression p0 = ωp. For φ̂(x) to be Hermitian we must have Â(−ωp,−p) =

Â†(ωp,p). The identification

Â(ωp,p) =

√
2ωp

(2π)3
âp (7.74)

then recovers the mode expansion of the Klein-Gordon field, Eq. (7.14).

Exercise 29. Total four-momentum in terms of creation and annihilation operators. Using the
mode expansion of the Klein-Gordon field,

φ̂(x, t) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + â†p e
ip·x
)
=

∫
d3p√

(2π)32ωp

(
âp e

−iωpt+ip·x + â†p e
iωpt−ip·x

)
,

(7.75)
derive the formula (7.22) for the (normal-ordered) total four-momentum operator P̂µ.

Solution:

Since P̂µ is time-independent (it is a conserved quantity), we may choose to evaluate it at
time t = 0 for convenience. We will use the mode expansions

φ̂(x, 0) =

∫
d3p√

(2π)32ωp

(
âp e

ip·x + â†p e
−ip·x

)
π̂(x, 0) = ∂tφ̂(x, 0) =

∫
d3p√

(2π)32ωp

(
− iωp âp e

ip·x + iωp â
†
p e

−ip·x
)

∂iφ̂(x, 0) =

∫
d3p√

(2π)32ωp

(
ipi âp e

ip·x − ipi â†p e
−ip·x

)
(7.76)

to calculate the integrals

1.

∫
d3x T̂ 0

i =

∫
d3x π̂∂iφ̂,

2.

∫
d3x T̂ 0

0 =

∫
d3x

1

2

(
π̂2 + (∂iφ̂)(∂iφ̂) +m2φ̂2

)
, (7.77)

and then apply normal ordering. Before starting, let us recall the integral formula
∫
d3x eip·x =

(2π)3δ(p).
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1. ∫
d3x π̂∂iφ̂ =

∫
d3x d3p d3p′ ωp p

′i

(2π)3
√
2ωp2ωp′

(
âp e

ip·x − â†p e
−ip·x

)(
âp′ eip

′·x − â†p′ e
−ip′·x

)
=

∫
d3p d3p′ ωp p

′i√
2ωp2ωp′

(
âpâp′δ(p+ p′)− âpâ

†
p′δ(p− p′)

− â†pâp′δ(−p+ p′) + â†pâ
†
p′δ(−p− p′)

)
=

∫
d3pωp√
2ωp2ωp

(
− piâpâ−p − piâpâ

†
p − piâ†pâp − piâ†pâ

†
−p

)
=

∫
d3p

pi
2

(
âpâ−p + âpâ

†
p + â†pâp + â†pâ

†
−p

)
(7.78)

Now, âp commutes with â−p, and so, by substituting p → −p,∫
d3p pi âpâ−p =

∫
d3p (−pi)â−pâp = −

∫
d3p pi âpâ−p = 0, (7.79)

and similarly for the â†pâ
†
−p term. Hence we arrive at∫

d3x π̂∂iφ̂ =

∫
d3p

pi
2

(
âpâ

†
p + â†pâp

)
→ P̂i =

∫
d3x : π̂∂iφ̂ : =

∫
d3p pi â

†
pâp (7.80)

2. By the same methods we can derive the following:∫
d3x π̂2 =

∫
d3p

2ωp
ω2
p

(
− âpâ−p + âpâ

†
p + â†pâp − â†pâ

†
−p

)
,∫

d3x (∂iφ̂)(∂iφ̂) =

∫
d3p

2ωp
p2
(
âpâ−p + âpâ

†
p + â†pâp + â†pâ

†
−p

)
,∫

d3xm2φ̂2 =

∫
d3p

2ωp
m2
(
âpâ−p + âpâ

†
p + â†pâp + â†pâ

†
−p

)
. (7.81)

Summing up (including the factor 1
2 ), and taking into account the relation ω2

p = p2 +m2,
we obtain

Ĥ =

∫
d3p

ωp

2

(
âpâ

†
p + â†pâp

)
→ P̂0 = :Ĥ : =

∫
d3pωp â

†
pâp. (7.82)

Exercise 30. Casimir effect. Consider a one-component massless Klein-Gordon field φ in one
spatial dimension, which is constraint to vanish at points x = 0, d, L. What is the dependence
of the vacuum energy on the position of the intermediate point d?

Solution:

The field modes between points 0 and d (region I) that solve the equation (∂2t − ∂2x)φ = 0
and respect the boundary conditions φ(0) = φ(d) = 0 are given by

fk(x) ∝ sin(pkx), with sin(pkd) = 0 → pk =
kπ

d
(k = 1, 2, . . .), (7.83)
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and the respective energies (for the massless field) read ωk = |pk| = kπ
d . The vacuum energy

between 0 and d is therefore

ẼI(d) =

∞∑
k=1

ωk
2

=
π

2d

∞∑
k=1

k, (7.84)

which is very infinite. This infinity can be regularized by introducing additional factors e−aωk

(which are relatively easy to handle analytically), so that frequencies ωk � 1
a effectively do not

contribute to the vacuum energy. (In an actual experiment with electromagnetic field the plates
do not have infinite conductivity, therefore they become transparent to electromagnetic waves of
high-enough frequency.) Then we can calculate

EI(d) =
π

2d

∞∑
k=1

k exp
(
− aπ

d
k
)
= − π

2d

d

π

∂

∂a

∞∑
k=0

exp
(
− aπ

d
k
)
= −1

2

∂

∂a

1

1− exp
(
− aπ

d

)
=

π

2d

exp
(
− aπ

d

)[
1− exp

(
− aπ

d

)]2 =
π

8d

1

sinh2(aπ2d )
. (7.85)

Since we eventually want to drop the regularisation, we look for an expansion as a→ 0:

EI(d) =
d

2πa2
z2

sinh2(z)

∣∣∣∣
z= aπ

2d

=
d

2πa2
1(

1 + z2

3! +O(z4)
)2
∣∣∣∣∣
z= aπ

2d

=
d

2πa2

(
1− z2

3
+O(z4)

)∣∣∣∣
z= aπ

2d

=
d

2πa2
− π

24d
+O(a2). (7.86)

By analogy, we have for the modes between d and L (region II) the regularised energy EII(d) =
EI(L− d), and so the total energy reads

E(d) = EI(d) + EII(d) =
L

2πa2
− π

24

(
1

d
+

1

L− d

)
+O(a2) (7.87)

The force F (d) exerted on the middle point (or plate in three dimensions) is calculated as the
negative gradient of the total energy:

F (d) = −∂E
∂d

= − π

24

(
1

d2
− 1

(L− d)2

)
+O(a2). (7.88)

Interestingly, we can now send a → 0, and obtain a finite result even without the regularizing
parameter. If the middle point is close to the origin (L� d) we obtain the Casimir force

F (d) ≈ − π~c
24d2

, (7.89)

where we reintroduced ~ and c. The Casimir force is attractive, and (being proportional to ~)
very tiny for macroscopic setups.

Exercise 31. Conserved charges in terms of creation and annihilation operators. Using the
mode expansion of a multicomponent Klein-Gordon field,

φ̂r(x, t) =

∫
d3p√

(2π)32ωp

(
âr,p e

−ip·x + â†r,p e
ip·x
)
, (7.90)
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derive the expression (7.35) for (normal-ordered) charge operators

Q̂a = −i
∫
d3x : π̂r(Ta)rsφ̂s : . (7.91)

Solution:

Following the same route as in Exercise 29 we find∫
d3x π̂rφ̂s =

∫
d3x d3p d3p′

(2π)3
√
2ωp2ωp′

(
− iωp âr,p e

ip·x + iωp â
†
r,p e

−ip·x
)(
âs,p′ eip

′·x + â†s,p′ e
−ip′·x

)
=

∫
d3p d3p′ iωp√

2ωp2ωp′

(
− âr,pâs,p′δ(p+ p′)− âr,pâ

†
s,p′δ(p− p′)

+ â†r,pâs,p′δ(−p+ p′) + â†r,pâ
†
s,p′δ(−p− p′)

)
=

∫
d3p iωp√
2ωp2ωp

(
− âr,pâs,−p − âr,pâ

†
s,p + â†r,pâs,p + â†r,pâ

†
s,−p

)
=

∫
d3p

i

2

(
− âr,pâs,−p − âr,pâ

†
s,p + â†r,pâs,p + â†r,pâ

†
s,−p

)
. (7.92)

Now Ta are Hermitian and purely imaginary, therefore antisymmetric: (Ta)rs = (Ta)
∗
sr =

−(Ta)sr. Hence∫
d3p (Ta)rsâr,pâs,−p = −

∫
d3p (Ta)srâr,−pâs,p = −

∫
d3p (Ta)rsâr,pâs,−p = 0, (7.93)

and similarly for the term â†r,pâ
†
s,−p. Therefore we obtain

Q̂a = −i
∫
d3x : π̂r(Ta)rsφ̂s : =

1

2

∫
d3p (Ta)rs

(
− â†s,pâr,p + â†r,pâs,p

)
=

∫
d3p â†r,p(Ta)rsâs,p.

(7.94)
Exercise 32. Algebra of Noether charges. Show that the Noether charges

Q̂a =

∫
d3p â†r,p(Ta)rsâs,p (7.95)

satisfy the same commutation rules as the generators of internal transformations Ta.

Solution:

A straightforward application of commutation rules for creation and annihilation operators,
Eq. (7.33), yields

[Q̂a, Q̂b] =

∫
d3p d3p′ (Ta)rs(Tb)r′s′

[
â†r,pâs,p , â

†
r′,p′ âs′,p′

]
=

∫
d3p d3p′ (Ta)rs(Tb)r′s′

(
â†r,p[âs,p , â

†
r′,p′ ]âs′,p′ + â†r′,p′ [â

†
r,p , âs′,p′ ]âs,p

)
=

∫
d3p d3p′ (Ta)rs(Tb)r′s′

(
â†r,pâs′,p′ δsr′δ(p− p′)− â†r′,p′ âs,p δrs′δ(p− p′)

)
=

∫
d3p

(
(Ta)rs(Tb)ss′ â

†
r,pâs′,p − (Ta)rs(Tb)r′r â

†
r′,pâs,p

)
=

∫
d3p

(
(TaTb)rs − (TbTa)rs

)
â†r,pâs,p (7.96)
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If now
[Ta,Tb] = fabcTc (7.97)

for some structure constants fabc, we find

[Q̂a, Q̂b] =

∫
d3p fabc(Tc)rs â

†
r,pâs,p = fabcQ̂c. (7.98)



Chapter 8

Canonical quantization of Dirac
field

When quantizing the Klein-Gordon field we repeatedly used the intuition (as well as concrete
formulas) gained while studying quantum oscillatory systems in Section 6.1. However, this
approach, although intuitively pleasing, has its limits — not every field theory has a direct
interpretation as a continuum of coupled oscillators. (Recall the non-relativistic ‘Schrödinger’
field of Section 6.2 whose Lagrangian contains the term ψ∗∂tψ, which has no analogue in the
standard oscillatory Lagrangian (5.6).) This is not really an issue since what we are ultimately
interested in is a general solution of the quantum field’s equation of motion in the form of a mode
expansion, where we can identify spatial shapes of the modes, energies, and polarization states.

This will be our strategy in dealing with the Dirac field described by the Lagrangian (studied
in Exercise 22)

L (Ψ, Ψ̄, ∂µΨ, ∂µΨ̄) = Ψ̄(iγµ∂µ−m)Ψ = Ψ†(i∂t−HD)Ψ, where HD = −iγ0γi∂i+mγ0 (8.1)

is the quantum-mechanical Dirac Hamiltonian introduced in Eq. (4.5). (We omit the ‘hat’ over
HD to reserve it for quantum field operators.) The four-component fields Ψ = (ψα) and Ψ̄ = (ψ̄α)
are treated as independent. From the Dirac Lagrangian we easily deduce the canonical momenta

πα =
∂L

∂(∂0ψα)
= iψ∗

α , π̄α =
∂L

∂(∂0ψ̄α)
= 0, (8.2)

and the total Hamiltonian

H =

∫
d3x (παψ̇α − L ) =

∫
d3x (iΨ†∂tΨ− L ) =

∫
d3xΨ†HDΨ. (8.3)

Thus, there are only eight independent canonical fields ψα and πα (π̄α vanish and ψ̄α are algebraic
combinations of the momenta πα).

The Dirac Lagrangian (8.1) yields the Dirac equation (iγµ∂µ −m)Ψ = 0, which describes,
according to Chapter 3, particles with spin 1

2 (such as electrons). These are fermions, and so
the corresponding quantum field theory should implement the Pauli exclusion principle. For the
quantized canonical fields ψ̂α and π̂α = iψ̂†

α we therefore postulate the equal-time anticommuta-
tion relations (as we have seen in the non-relativistic case in Section (6.2.2))

{ψ̂α(x, t), π̂β(y, t)} = i δαβ δ(x− y) , {ψ̂α(x, t), ψ̂β(y, t)} = {π̂α(x, t), π̂β(y, t)} = 0. (8.4)

95
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Further reason for using anticommutators (rather than commutators) is to have the total energy
bounded from below, as will be discussed later (Eq. (8.15)).

The Heisenberg equation of motion for the quantum field Ψ̂(x) reads

∂tψ̂α(x, t) = −i[ψ̂α(x, t), Ĥ] = −
∫
d3x′ [ψ̂α(x, t), π̂β(x

′, t)(H ′
D)βκψ̂κ(x

′, t)], (8.5)

where (H ′
D)βκ = −i(γ0γi)βκ∂′i+m(γ0)βκ, and using the anticommutator Leibniz rule [A,BC] =

{A,B}C −B{A,C} we find

∂tψ̂α(x, t) = −
∫
d3x′ i δαβ δ(x− x′)(H ′

D)βκψ̂κ(x
′, t) = −i(HDψ̂)α(x, t) → i∂tΨ̂ = HDΨ̂.

(8.6)
The same conclusion would, in fact, be reached had we used commutators instead of anticom-
mutators in Eq. (8.4); in either case we obtain the Dirac equation

(iγµ∂µ −m)Ψ̂ = 0 (8.7)

for the quantum field Ψ̂(x).

8.1 Mode expansion of Dirac field
We can copy a general solution of the quantum-field-theoretic Dirac equation (8.7) from Chap-
ter 3, Eq. (3.29) (only replacing the classical plane wave amplitudes Bp,s, D∗

p,s by constant
operators b̂p,s, d̂ †

p,s). Thus we obtain a mode expansion of the quantized Dirac field

Ψ̂(x) =
∑
s=± 1

2

∫
d3p

(2π)3/2

√
m

ωp

(
b̂p,su(p, s)e

−ip·x + d̂ †
p,sv(p, s)e

ip·x
)
, where p0 = ωp (8.8)

and its Dirac conjugate

ˆ̄Ψ(x) =
∑
s=± 1

2

∫
d3p

(2π)3/2

√
m

ωp

(
d̂p,sv̄(p, s)e

−ip·x + b̂ †p,sū(p, s)e
ip·x
)
. (8.9)

The polarisation spinors u and v satisfy the algebraic equations

(γµpµ −m)u(p) = 0 , (γµpµ +m)v(p) = 0, (8.10)

whose solutions are given by (standard Dirac representation of γ-matrices assumed)

u(p, s) =
γµpµ +m√
2m(p0 +m)

u(0, s) , v(p, s) =
−γµpµ +m√
2m(p0 +m)

v(0, s), (8.11)

with

u(0, 12 ) =


1
0
0
0

 , u(0,− 1
2 ) =


0
1
0
0

 , v(0, 12 ) =


0
0
1
0

 , v(0,− 1
2 ) =


0
0
0
1

 . (8.12)

Note that here, unlike in the case of multicomponent Klein-Gordon field, the label s refers to
polarization states (spin ‘up’ for s = 1

2 and spin ‘down’ for s = − 1
2 ); it does not enumerate the
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components of the field Ψ (this is the role of indices α, β, . . .). We do not sum over s unless
∑
s

is explicitly displayed.
The amplitude operators b̂p,s, b̂†p,s and d̂p,sd̂ †

p,s can be expressed in terms of Ψ̂ and ˆ̄Ψ, and in
Exercise 34 we find the following anticommutation relations:

{b̂p,s, b̂†p′,s′} = δss′ δ(p− p′) , {d̂p,s, d̂ †
p′,s′} = δss′ δ(p− p′), (8.13)

whereas anticommutators involving the remaining combinations of the operators b̂, b̂†, d̂, d̂ † van-
ish:

{b̂, b̂} = {b̂†, b̂†} = {d̂, d̂} = {d̂ †, d̂ †} = {b̂, d̂} = {b̂, d̂ †} = {b̂†, d̂} = {b̂†, d̂ †} = 0 (8.14)

(Here we have, for short, hidden the arbitrary parameters p,p′ and s, s′.) The Fock space
corresponding to the quantized Dirac field can be built, similarly as in Section 6.2.2, by acting
with fermionic creation operators b̂†p,s, d̂ †

p,s on a vacuum state |0〉, which gets annihilated by all
the operators b̂p,s, d̂p,s.

Plugging this mode expansion into the (quantized) Hamiltonian operator (8.3), we find, in
Exercise 33, the expression

Ĥ =
∑
s

∫
d3pωp

(
b̂†p,sb̂p,s − d̂p,sd̂

†
p,s

)
=
∑
s

∫
d3pωp

(
b̂†p,sb̂p,s + d̂ †

p,sd̂p,s − δ(0)
)
. (8.15)

where in the second step we reordered the d and d† operators using the anticommutation rela-
tion (8.13). Subtracting the infinite vacuum energy (note that this time the sign is opposite to
the bosonic case in Eq. (7.17)) we obtain the normal-ordered Hamiltonian

:Ĥ : = Ĥ − 〈0| Ĥ |0〉 =
∑
s

∫
d3pωp

(
b̂†p,sb̂p,s + d̂ †

p,sd̂p,s

)
, (8.16)

which is positive-definite on all states in the Fock space. For fermionic operators the normal
ordering : . . . : is defined slightly differently compared to the bosonic case. It again pushes all
creation operators to the left of all annihilation operators, but every swap in this process incurs a
factor of −1 (for example, :d d†b b† : = (−1)3d†b†d b). Under normal ordering, fermionic operators
behave as Grassmann symbols (see Eq. (6.108)). With this rule, the form (8.16) follows from the
first expression in Eq. (8.15).

The use of anticommutators now turns out as crucial, for if we postulated commutation
relations between the fields in Eq. (8.4), and hence obtained commutation relations for the
creation and annihilation operators in Eq. (8.13), the term d̂ †

p,sd̂p,s would keep the negative sign.
As a result, the field would indefinitely create more and more d-type particles while minimizing
its total energy. Therefore, the use of anticommutators for the Dirac field is dictated by the form
of the Dirac Lagrangian (8.1).

When developing his relativistic quantum mechanics for spin- 12 particles, Dirac was concerned
with negative-energy states (those with wave-functions v(p)eip·x). He postulated what is now
known as the ‘Dirac sea’: that the ground state has all negative-energy levels filled with particles
(this is possible due to Pauli exclusion principle for fermions), but it is homogeneous and hence
unobservable. Occasionally a negative-energy electron in the Dirac sea can absorb a photon
of large enough energy in order to overcome the energy gap of 2mc2, and jump to one of the
positive-energy states. This creates a hole, which Dirac interpreted as an antiparticle — the
positron (discovered a few years later in 1932).

We have seen that on the level of quantum field theory the problem with negative-energy
states is avoided by adopting anticommutation relations between the field operators. Particles
created by the operators d† will shortly turn out to be antiparticles of the particles created by
b†.
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8.2 States and conserved quantities
We will show that the states created from the vacuum by operators b̂†p,s, d̂ †

p,s are eigenstates of
the operators of total four-momentum P̂µ and total charge Q̂ of the Dirac field (analogously to
the case of complex Klein-Gordon field, Section 7.2.1).

First, let us recall Exercise 22 where the energy-momentum tensor of the Dirac field and the
Dirac current were determined:

Tµν = iΨ̄γµ∂νΨ− δµνL , Jµ = Ψ̄γµΨ. (8.17)

The total four-momentum operator P̂µ and the total charge operator Q̂ are then given by

P̂0 = :Ĥ : , P̂j =

∫
d3x : T̂ 0

j : =

∫
d3x : iΨ̂†∂jΨ̂ : , Q̂ =

∫
d3x :J0 : =

∫
d3x : Ψ̂†Ψ̂ : ,

(8.18)
where fermionic normal ordering has been used. Plugging in the mode expansions (8.8) and (8.9),
and using the anticommutation relations (8.13) and (8.14), they read (by calculations analogous
to those in Exercise 33)

P̂µ =
∑
s

∫
d3p pµ

(
b̂†p,sb̂p,s + d̂ †

p,sd̂p,s

)
, Q̂ =

∑
s

∫
d3p

(
b̂†p,sb̂p,s − d̂ †

p,sd̂p,s

)
. (8.19)

The ‘anticommutator Leibniz rule’ [AB,C] = A{B,C} − {A,C}B then yields

[P̂µ, b̂
†
p,s] =

∑
s′

∫
d3p′ p′µ

[
b̂†p′,s′ b̂p′,s′ + d̂ †

p′,s′ d̂p′,s′ , b̂
†
p,s

]
=
∑
s′

∫
d3p′ p′µ b̂

†
p′,s′

{
b̂p′,s′ , b̂

†
p,s

}
= pµb̂

†
p,s. (8.20)

By similar calculations, and Hermitian conjugation, we find altogether

[P̂µ, b̂
†
p,s] = pµb̂

†
p,s , [P̂µ, b̂p,s] = −pµb̂p,s , [P̂µ, d̂

†
p,s] = pµd̂

†
p,s , [P̂µ, d̂p,s] = −pµd̂p,s,

(8.21)
and

[Q̂, b̂†p,s] = b̂†p,s , [Q̂, b̂p,s] = −b̂p,s , [Q̂, d̂ †
p,s] = −d̂ †

p,s , [Q̂, d̂p,s] = d̂p,s. (8.22)

This is what we need in order to evaluate the action of the operators P̂µ and Q̂ on a generic
state

|α〉 ≡ b̂†p1,s1 · · · b̂
†
pnb

,snb
d̂ †
p′
1,s

′
1
· · · d̂†p′

nd
,s′nd

|0〉 . (8.23)

In complete analogy with Eqs. (7.49) and (7.55) for the complex Klein-Gordon field we find

P̂µ |α〉 =
( nb∑
`=1

pµ` +

nd∑
`′=1

pµ`′
)
|α〉 ,

Q̂ |α〉 = (nb − nd) |α〉 . (8.24)

In words, the operator b̂†p,s creates a particle with four-momentum pµ, spin projection s, and
charge +1; the operator d̂ †

p,s creates an antiparticle with four-momentum pµ, spin projection s,
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and charge −1. (Note that there is no conserved spin operator. Only spin plus orbital angular
momentum yield conserved Noether charges — see Eq. (5.71).)

Let us also mention that the commutator identities (8.21) and (8.22) imply for the Dirac field
the formulas

[iaµP̂µ, Ψ̂(x)] = aµ∂µΨ̂(x) → eia
µP̂µΨ̂(x)e−ia

µP̂µ = Ψ̂(x+ a), (8.25)

and
[Q̂, Ψ̂(x)] = −Ψ̂(x) → eiλQ̂Ψ̂(x)e−iλQ̂ = e−iλΨ̂(x), (8.26)

analogous to Klein-Gordon field’s Eqs. (7.52) and (7.54).
Finally, relativistically normalised one-particle states are defined

|p, s〉 ≡
√
(2π)32ωp√

2m
b̂†p,s |0〉 , |p̄, s̄〉 ≡

√
(2π)32ωp√

2m
d̂†p,s |0〉 , (8.27)

with
〈p, s|p′, s′〉 = 〈p̄, s|p̄′, s′〉 = (2π)3

ωp

m
δs,s′δ(p− p′), (8.28)

where the extra factor 1√
2m

(compare to the scalar field case, Section 7.3.1) has been added to
obtain simple expressions

〈0| Ψ̂(x) |p, s〉 = u(p, s) e−ip·x , 〈0| ˆ̄Ψ(x) |p̄, s̄〉 = v̄(p, s) e−ip·x. (8.29)

Since (iγµ∂µ −m)Ψ̂ = 0, and hence also i∂µ ˆ̄Ψγµ +m ˆ̄Ψ = 0, these one-particle wave functions
satisfy the Dirac equation, and its Dirac conjugate, respectively.
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8.3 Exercises
Exercise 33. Dirac field Hamiltonian in terms of creation and annihilation operators. Using
the mode expansion of the Dirac field,

Ψ̂(x) =
∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
b̂p,su(p, s)e

−ip·x + d̂ †
p,sv(p, s)e

ip·x
)

(8.30)

derive the formula (8.15) for the Hamiltonian operator of the Dirac field.

Solution:

Since Ψ̂(x) satisfies the Dirac equation, (iγ0∂0+iγi∂i−m)Ψ̂ = 0, we can cast the Hamiltonian
as

Ĥ =

∫
d3x ˆ̄Ψ(−iγi∂i +m)Ψ̂ =

∫
d3x Ψ̂†i∂0Ψ̂ (8.31)

We shall need the following versions of the mode expansion:

Ψ̂†(x, 0) =
∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
d̂p,sv

†(p, s)eip·x + b̂†p,su
†(p, s)e−ip·x

)
i∂0Ψ̂(x, 0) =

∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
ωp b̂p,su(p, s)e

ip·x − ωp d̂
†
p,sv(p, s)e

−ip·x
)

(8.32)

where we have take the liberty to choose (as in Exercise 29) time t = 0, since Ĥ is time-
independent. Now calculate

Ĥ =
∑
s,s′

∫
d3x d3p d3p′

(2π)3
√
ωpωp′

mωp′

×
(
d̂p,sv

†(p, s)eip·x + b̂†p,su
†(p, s)e−ip·x

)(
b̂p′,s′u(p

′, s′)eip
′·x − d̂ †

p′,s′v(p
′, s′)e−ip

′·x
)

=
∑
s,s′

∫
d3p d3p′
√
ωpωp′

mωp′

(
d̂p,sb̂p′,s′v

†(p, s)u(p′, s′)δ(p+p′)− d̂p,sd̂
†
p′,s′v

†(p, s)v(p′, s′)δ(p−p′)

+ b̂†p,sb̂p′,s′u
†(p, s)u(p′, s′)δ(−p+ p′)− b̂†p,sd̂

†
p′,s′u

†(p, s)v(p′, s′)δ(−p− p)
)

=
∑
s,s′

∫
d3pm

(
d̂p,sb̂−p,s′v

†(p, s)u(−p, s′)− d̂p,sd̂
†
p,s′v

†(p, s)v(p, s′)

+ b̂†p,sb̂p,s′u
†(p, s)u(p, s′)− b̂†p,sd̂

†
−p,s′u

†(p, s)v(−p, s′)
)

(8.33)

Using the identities for polarisation spinors from Eq. (3.31),

u†(p, s)u(p, s′) =
ωp

m
δss′ , v†(p, s)v(p, s′) =

ωp

m
δss′ , u†(p, s)v(−p, s′) = 0, (8.34)

we finally obtain

Ĥ =
∑
s,s′

∫
d3pm

(
− ωp

m
δss′ d̂p,sd̂

†
p,s′ +

ωp

m
δss′ b̂

†
p,sb̂p,s′

)
=
∑
s

∫
d3pωp

(
b̂†p,sb̂p,s − d̂p,sd̂

†
p,s

)
.

(8.35)
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Exercise 34. Anticommutation relations for creation and annihilation operators. Using the
canonical anticommutation relations

{ψ̂α(x, t), π̂β(y, t)} = i δαβ δ(x− y) (8.36)

derive the anticommutation relations between creation and annihilation operators,

{b̂p,s, b̂†p′,s′} = δss′ δ(p− p′) , {d̂p,s, d̂ †
p′,s′} = δss′ δ(p− p′). (8.37)

Solution:

Taking the Fourier transform of the mode expansion (8.30)∫
d3x e−ip·xΨ̂(x, 0) =

∑
s′

∫
d3p′

(2π)3/2

√
m

ωp′
(2π)3

(
b̂p′,s′u(p

′, s′)δ(p− p′) + d̂ †
p′,s′v(p

′, s′)δ(p+ p′)
)

=
∑
s′

√
m

ωp
(2π)3/2

(
b̂p,s′u(p, s

′) + d̂ †
−p,s′v(−p, s′)

)
, (8.38)

and projecting by u†(p, s) with a help of the identities (8.34)

u†(p, s)

∫
d3x e−ip·xΨ̂(x, 0) =

∑
s′

√
m

ωp
(2π)3/2b̂p,s′

ωp

m
δss′ = (2π)3/2b̂p,s

√
ωp

m
(8.39)

we obtain the annihilation operator b̂p,s expressed in terms of the field Ψ̂,

b̂p,s =

∫
d3x

(2π)3/2

√
m

ωp
u†(p, s)Ψ̂(x, 0) e−ip·x. (8.40)

Now we can calculate

{b̂p,s, b̂†p′,s′} =

∫
d3x d3x′

(2π)3
m

√
ωpωp′

{u†(p, s)Ψ̂(x, 0), Ψ̂†(x′, 0)u(p′, s′)} e−ip·x+ip
′·x′

, (8.41)

where the anticommutator reads

u∗α(p, s){ψ̂α(x, 0), ψ̂
†
β(x

′, 0)}uβ(p′, s′) = u∗α(p, s)δαβδ(x−x′)uβ(p
′, s′) = u†(p, s)u(p′, s′)δ(x−x′).

(8.42)
This allows to eliminate the integrations over x and x′,

{b̂p,s, b̂†p′,s′} =

∫
d3x

(2π)3
m

√
ωpωp′

u†(p, s)u(p′, s′) ei(p
′−p)·x =

m
√
ωpωp′

u†(p, s)u(p′, s′)δ(p− p′),

(8.43)
and noting that due to the delta function δ(p− p′), p′ gets identified with p in the surrounding
factors, we finally arrive at

{b̂p,s, b̂†p′,s′} =
m

ωp
u†(p, s)u(p, s′)δ(p− p′) = δss′ δ(p− p′), (8.44)

where Eq. (8.34) has been used once again.
To find the anticommutator between d and d† we project Eq. (8.38) on v†(−p, s),

v†(−p, s)

∫
d3x e−ip·xΨ̂(x, 0) =

∑
s′

√
m

ωp
(2π)3/2d̂†−p,s′

ωp

m
δss′ = (2π)3/2d̂†−p,s

√
ωp

m
, (8.45)
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and express

d̂†p,s =

∫
d3x

(2π)3/2

√
m

ωp
v†(p, s)Ψ̂(x, 0) eip·x. (8.46)

The rest is completely analogous to the b̂, b̂† case.

Exercise 35. *****



Chapter 9

Free-field propagators

9.1 Commutation function
Up to now our discussion of field quantization has been based on canonical commutation or
anticommutation relations at equal times. In the simplest case of a real one-component Klein-
Gordon field with Lagrangian (7.1) these can be stated as (the canonical momentum field π̂ =

∂0φ̂)
x0 = y0 : [φ̂(x), φ̂(y)] = 0 , [∂0φ̂(x), φ̂(y)] = −iδ(x− y), (9.1)

where the field operator is given by the mode expansion (7.14):

φ̂(x) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + â†p e
ip·x
)
, where p0 = ωp =

√
p2 +m2. (9.2)

It would be gratifying to have a formulation of commutation relations that is relativistically
invariant, i.e., that does not single out the time coordinate. For that purpose let us define the
(Pauli-Jordan) commutation function

i∆(x− y) = [φ̂(x), φ̂(y)], (9.3)

where we have anticipated that ∆ is a number-valued function that only depends on the difference
x− y. Indeed, substituting the mode expansion (9.2) we find

[φ̂(x), φ̂(y)] =

∫
d3p d3p′

(2π)3
√
2ωp2ωp′

(
[âp, â

†
p′ ]︸ ︷︷ ︸

δ(p−p′)

e−ip·xeip
′·y + [â†p, âp′ ]︸ ︷︷ ︸

−δ(p−p′)

eip·xe−ip
′·y
)

=

∫
d3p

(2π)32ωp

(
e−ip·(x−y) − eip·(x−y)

)
, where p0 = ωp. (9.4)

Meanwhile we observe that since the operator φ̂(x) satisfies the Klein-Gordon equation, the
same holds for the commutation function (regarded as a function of x):

(�x +m2)∆(x− y) = −i[(�x +m2)φ̂(x), φ̂(y)] = 0, (9.5)

with the initial conditions

∆|x0=y0 = 0 ,
∂∆

∂x0

∣∣∣∣
x0=y0

= −δ(x− y) (9.6)

103
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given by the equal-time commutation relations (9.1). ∆(x − y) therefore describes a wave that
starts from a localised distortion (“a hammer hit” at point y and time y0) of a uniform classical
field. As a remark, note that we could as well define another commutation function i∆̃(x− y) =

[φ̂(x), π̂(y)], that would be again a solution of the Klein-Gordon equation, now with initial
conditions

∆̃|x0=y0 = δ(x− y) ,
∂∆̃

∂x0

∣∣∣∣∣
x0=y0

= 0, (9.7)

corresponding to “pulling the field infinitely high” at point y and time y0.
The commutation function ∆(x− y) can be rewritten in a manifestly Lorentz-invariant form.

To this end we make the substitution p → −p in the second term of expression (9.4), and
introduce an extra integration over (now independent) variable p0:

i∆(x− y) =

∫
d4p

(2π)32ωp

(
δ(p0 − ωp)e

−ip0(x0−y0)+ip·(x−y) − δ(p0 + ωp)e
−ip0(x0−y0)+ip·(x−y)

)
=

∫
d4p

(2π)3
sgn(p0)δ(p

2 −m2) e−ip·(x−y), (9.8)

where we have used the δ-function formula (7.72). Since d4p′ = d4p |det L| = d4p, the resulting
integral representation is invariant under orthochronous Lorentz transformations x′ = Lx (these
do not change the sign of p0, sgn(p0)):

∆(x′ − y′) = ∆(x− y). (9.9)

Given any two distinct space-like separated points x and y, a Lorentz boost exists such that
in the new frame of reference the times become equal: x′0 = y′

0. This then implies that

∀x, y : (x−y)2 < 0 : [φ̂(x), φ̂(y)] = i∆(x−y) = i∆(x′−y′) = [φ̂(x′), φ̂(y′)]|x′0=y′0 = 0, (9.10)

i.e., the field operators taken at two space-like separated points commute. This property is called
microcausality. It implies that measurements at two points that have a space-like separation, i.e.,
those which cannot get into contact through the transmission of light signals, do not influence
each other.

For the Dirac field one can similarly study anticommutation relations {ψ̂α(x), ψ̂β(y)} at ar-
bitrary times, and find that local observables, i.e., bilinear combinations ˆ̄ψα(x)Oαβ(x)ψ̂β(x),
commute for space-like separated points [2, p. 138] — microcausality again holds (as it does also
for all the other relativistic field theories).

9.1.1 Spin statistics connection
If we tried to postulate anticommutation relations between Klein-Gordon field’s creation and an-
nihilation operators, then microcausality (on the level of bilinear observables) would be violated
for spatial distances of the order of the Compton wavelength ~

mc [2, Ch. 4.4]. That is, commu-
tation relations (which imply bosonic statistics for particle excitations) are necessary in order to
obtain a ‘consistent’ relativistic quantum field theory with the Klein-Gordon Lagrangian. At the
same time, in Section 8.1 we argued that the Dirac field must be quantized with anticommutators
(which imply fermionic statistics) in order to avoid infinite negative energies.

These conclusions are part of a more general result, the spin-statistics theorem, first derived
by Pauli: Lorentz invariance, positive energies, positive norms, and causality together imply
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that fields with spin 0, 1, 2, . . . are quantized using commutators and the corresponding parti-
cle excitations obey Bose-Einstein statistics, while fields with spin 1

2 ,
3
2 , . . . are quantized using

anticommutators and their particle excitations obey Fermi-Dirac statistics.
Such distinction is not available in non-relativistic field theory, Section 6.2, where the choice

between commutators and anticommutators, i.e., between symmetric (bosonic) wave-functions,
and antisymmetric (fermionic) wave-functions is made ‘by hand’.

Quantum-field-theoretic description of particles also naturally explains why particles of the
same type, even created in different parts of the universe, are all absolutely identical and indis-
tinguishable. They are created as excitations of one and the same quantum field.

9.2 Feynman propagator of Klein-Gordon field
An essential ingredient for the perturbative investigation of interacting quantum field theories
(starting in Chapter 11) is the Feynman propagator. For a free one-component real Klein-Gordon
field it is defined as

i∆F (x− y) = 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉 , (9.11)

where the time ordering T (.) reorders the operators to chronological order so that the earlier
time is placed on the right:

T
(
φ̂(x)φ̂(y)

)
= θ(x0 − y0)φ̂(x)φ̂(y) + θ(y0 − x0)φ̂(y)φ̂(x) =

{
φ̂(x)φ̂(y), x0 ≥ y0

φ̂(y)φ̂(x), y0 > x0
. (9.12)

The relevance of time ordering stems from the perturbation expansion of the Dyson operator
T exp

(
−i
∫ t
t0
dt′ ĤI

I (t
′)
)

(the evolution operator in the interaction picture), where Feynman prop-
agators feature as basic building blocks, as we shall see in Chapter 11.

An explicit form of the Feynman propagator is found with a help of the mode expansion (9.2).
First, for x0 > y0 we have

〈0| φ̂(x)φ̂(y) |0〉 =
∫

d3p d3p′

(2π)3
√
2ωp2ωp′

〈0| âpâ†p′ |0〉︸ ︷︷ ︸
δ(p−p′)

e−ip·xeip
′·y =

∫
d3p

(2π)32ωp
e−ip·(x−y), (9.13)

and hence, altogether,

i∆F (x−y) =
∫

d3p

(2π)32ωp

(
θ(x0−y0)e−ip·(x−y)+θ(y0−x0)eip·(x−y)

)
, where p0 = ωp. (9.14)

This also shows that 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉 is a function of the difference x−y, which is in fact clear

on theoretical grounds from translational invariance of the vacuum state, Û(a) |0〉 = |0〉, where
Û(a) ≡ eia

µP̂µ and P̂µ |0〉 = 0, together with the transformation property φ̂(x) = Û(y)φ̂(x −
y)Û†(y) (see Eq. (7.52)):

〈0|T
(
φ̂(x)φ̂(y)

)
|0〉 = 〈0| Û(y)T

(
φ̂(x− y)Û†(y)Û(y)φ̂(0)

)
Û†(y) |0〉 = 〈0|T

(
φ̂(x− y)φ̂(0)

)
|0〉 .
(9.15)

A very useful (Lorentz invariant) form of the Feynman propagator can be derived by employ-
ing the integral representation of the Heaviside step function from Exercise 36,

θ(x0) = lim
ε→0+

i

∫ +∞

−∞

dp0
2π

e−ip0x
0

p0 + iε
, θ(−x0) = lim

ε→0+
(−i)

∫ +∞

−∞

dp0
2π

e−ip0x
0

p0 − iε
. (9.16)
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(For brevity, the limit in ε is usually not displayed, but remains implicit in all calculations.)
Putting y = 0 this gives

i∆F (x) = i

∫
d3p dp0
(2π)42ωp

(
e−i(p0+ωp)x

0+ip·x

p0 + iε
− e−i(p0−ωp)x

0−ip·x

p0 − iε

)
. (9.17)

In the first term we make the substitution p0 → p0−ωp, and in the second term the substitutions
p0 → p0 + ωp and p → −p:

i∆F (x) = i

∫
d4p

(2π)42ωp

(
e−ip·x

p0 − (ωp − iε)
− e−ip·x

p0 + ωp − iε

)
= i

∫
d4p

(2π)42ωp

2(ωp − iε) e−ip·x

p20 − (ωp − iε)2
.

(9.18)
In the limit ε↘ 0 we can neglect the ε in the integrand’s numerator as this act has no singular
effect, approximate (ωp − iε)2 ≈ ω2

p − 2iωpε, and write ε instead of 2ωpε (this does not change
the limit). In total, we find the momentum-space representation of the Feynman propagator of
the Klein-Gordon field

i∆F (x− y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
(ε↘ 0). (9.19)

Let us stress that p0 in this expression is ‘off-shell’ — it is independent of the three-momentum
p (p0 6= ωp). The ε in the denominator, although infinitesimally small, must be kept to avoid
singularities at p0 = ±ωp. It informs us that these poles are shifted from the p0 axis to locations
ωp − iε and −ωp + iε (see Section 9.2.1 below).

From the expression (9.19) it is easy to see that the Feynman propagator is a Green function
of the Klein-Gordon equation, since application of the Klein-Gordon differential operator yields

(�x +m2)∆F (x− y) =

∫
d4p

(2π)4
−p2 +m2

p2 −m2 + iε
e−ip·(x−y) = −

∫
d4p

(2π)4
e−ip·(x−y) = −δ(x− y).

(9.20)
(Note that we could drop the ε since the singularity in the denominator was compensated by the
numerator.) This observation can be made also by applying the differential operator �x +m2

to expression (9.12), and carefully differentiating the θ-functions (see Exercise 37).
It is much more practical to work with the momentum space representation of the Feynman

propagator, as explicit integration over the momenta leads to rather unpleasant expressions. This
is illustrated in Exercise 38 where we treat the case of space-like separated equal-time points x
and y. For equal times, using Eq. (9.13), we find that the Feynman propagator is given by the
formula

i∆F (x− y, 0) = 〈0| φ̂(x, t)φ̂(y, t) |0〉 =
∫

d3p

(2π)32ωp
eip·(x−y) =

m

(2π)2
K1(m|x− y|)

|x− y|
, (9.21)

where K1 is one of the Bessel functions. This function decays exponentially fast for separations
|x − y| & 1

m = ~
mc , where we have reintroduced ~ and c to obtain a quantity with dimension

length — the (reduced) Compton wavelength of a particle with mass m. In the limit m→ 0 one
finds a much slower polynomial decay

i∆F (x− y, 0)|m→0 =
1

(2π)2
1

|x− y|2
. (9.22)

As we have seen, although space-like separated field operators φ̂(x) commute (they respect
microcausality), they still develop nonzero vacuum correlations due to the quantum entanglement
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of the vacuum state. In this respect let us recall the discussion for a system of coupled quantum
oscillators in Section 6.1.3, where it was shown that for the (Gaussian) vacuum state characterized
by the matrix A, correlations between different points are given by

〈0| q̂nq̂n′ |0〉 = ~
2
(A−1)nn′ , where A−1 =

1

M
VΩ−1 V†. (9.23)

For a continuous Klein-Gordon field the mode matrix V translates as (see Section 7.1)

k  p , Vnk  F (x,p) =
eip·x

(2π)3/2
, (9.24)

and we obtain (with ~ =M = 1)

〈0| φ̂(x)φ̂(y) |0〉 = 1

2

∫
d3pF (x,p)

1

ωp
F ∗(y,p) =

∫
d3p

(2π)32ωp
eip·xe−ip·y, (9.25)

in agreement with Eq. (9.21).
Eq. (9.21) shows that the states φ̂(x, t) |0〉, for varying values of x, are not completely localized

(unlike in non-relativistic field theory — see Eq. (9.49)), but rather overlap one another for
distances comparable to the Compton wavelength. With this proviso, the Feynman propagator
i∆F (x − y) = 〈0|T

(
φ̂(x)φ̂(y)

)
|0〉 is a function that specifies the probability amplitude for a

particle to travel from a spacetime point y to another spacetime point x (if x0 > y0), and vice
versa (if y0 > x0).

9.2.1 Retarded propagator
We have mentioned earlier that the iε term in Eq. (9.19) serves to avoid the singularities of the
denominator when performing the p0 integration. These singularities are displayed in complex
p0 plane in Fig. 9.1 (left). Let us recall the Cauchy integral theorem,

for a closed contour Γ and a holomorphic function f :

∮
Γ

f(z) dz = 0, (9.26)

which allows us to freely deform the integration contour so long as we do not cross any singularity
of the function being integrated. Hence, we may modify the contour of the p0 integration (the

ωp − iε

−ωp + iε
Im(p0)

Re(p0)
ΓF

ωp

−ωp

ε

Figure 9.1: Poles of the Feynman propagator avoided by the contour ΓF .

real axis) so as to avoid the points ±ωp on the real line, and obtain the contour ΓF on the right
side of Fig. 9.1. The ε in the denominator can now be sent to zero, and we arrive at the following
representation of the Feynman propagator

∆F (x− y) =

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
=

∫
R3

d3p

(2π)3

∫
ΓF

dp0
2π

e−ip·(x−y)

p2 −m2
. (9.27)
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The Feynman propagator is one of infinitely many Green functions of the Klein-Gordon
operator. Any other can be obtained by adding a solution of the homogeneous Klein-Gordon
equation. For example, consider the integration contour ΓR = ΓF + Γ0 depicted in Fig. 9.2.
Since

Im(p0)

Re(p0)
ΓR

ωp−ωp

ΓF

Γ0

ωp

−ωp

Figure 9.2: Adding the Feynman contour ΓF and a loop around the point −ωp (denoted Γ0)
yields the contour ΓR for the retarded propagator.

(�x +m2)

∫
R3

d3p

(2π)3

∮
Γ0

dp0
2π

e−ip·(x−y)

p2 −m2
=

∫
R3

d3p

(2π)3

∮
Γ0

dp0
2π

(−1) e−ip·(x−y) = 0, (9.28)

the function

∆R(x− y) =

∫
R3

d3p

(2π)3

∫
ΓR

dp0
2π

e−ip·(x−y)

p2 −m2
=

∫
d4p

(2π)4
e−ip·(x−y)

(p0 + iε)2 − ω2
p

(9.29)

is again a Green function of the Klein-Gordon equation, called the retarder (or forward) propa-
gator. An alternative representation is obtained by carrying out the p0 integration (essentially
reversing the steps that led from Eq. (9.14) to Eq. (9.19)):

i∆R(x−y) = θ(x0−y0)
∫

d3p

(2π)32ωp

(
e−ip·(x−y)−eip·(x−y)

)∣∣∣
p0=ωp

= θ(x0−y0)i∆(x−y), (9.30)

where i∆(x−y) is the Pauli-Jordan commutation function. The retarded propagator is therefore
a Green function that propagates a classical field to the future. We shall make use of it in
Exercise 39.

9.2.2 Propagators from the action
Rewrite the action of the Klein-Gordon field as a quadratic form

S =

∫
d4x

(
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2

)
=̂

∫
d4x

1

2
φ(x)

(
− ∂µ∂

µ −m2
)
φ(x), (9.31)

where we have neglected a boundary term (therefore the sign ‘=̂’). The Feynman propagator
∆F is a Green’s function (an operator inverse) of the bracketed differential operator:

(−�x −m2)∆F (x− y) = δ(x− y). (9.32)

(Note that the minus sign naturally moved from the right-hand side of (9.20) to the left.)
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We can formally solve this equation by dividing by the differential operator, adding Feynman’s
iε to avoid singular behaviour, and using the Fourier representation of the δ-function. We obtain

∆F (x− y) =
1

−�x −m2 + iε

∫
d4p

(2π)4
e−ip·(x−y) =

∫
d4p

(2π)4
e−ip·(x−y)

pµpµ −m2 + iε
, (9.33)

reproducing formula (9.19).
This way of inferring the Feynman propagator from a free field theory action is rather efficient

and indeed very useful, especially when dealing with more complicated field theories (as, for
example, in Exercise 40).

9.2.3 Multicomponent Klein-Gordon field
For a multicomponent Klein-Gordon field Φ described by the Lagrangian (7.29), all the compo-
nents φr are equivalent, and the creation and annihilation operators corresponding to different
components commute. Hence, the Feynman propagator essentially reduces to that of a one-
component field:

i(∆F )rs(x− y) ≡ 〈0|T
(
φ̂r(x)φ̂s(y)

)
|0〉 = δrs 〈0|T

(
φ̂1(x)φ̂1(y)

)
|0〉 = δrs i∆F (x− y). (9.34)

A complex Klein-Gordon field is built out of two real (or, after quantization, Hermitian)
components according to the formulas (see Section 7.2.1)(

ϕ̂
ϕ̂†

)
= UΦ̂, where Φ̂ =

(
φ̂1
φ̂2

)
and U =

1√
2

(
1 i
1 −i

)
is unitary. (9.35)

Writing Eq. (9.34) in matrix form, and applying U on the left and U† on the right, we find

〈0|T
(
Φ̂(x)Φ̂†(y)

)
|0〉 = i∆F (x− y) I → 〈0|T

(
UΦ̂(x)

(
UΦ̂(y)

)†) |0〉 = i∆F (x− y) I. (9.36)

Diagonal matrix elements yield

〈0|T
(
ϕ̂(x)ϕ̂†(y)

)
|0〉 = 〈0|T

(
ϕ̂†(x)ϕ̂(y)

)
|0〉 = i∆F (x− y), (9.37)

while the off-diagonal ones give

〈0|T
(
ϕ̂(x)ϕ̂(y)

)
|0〉 = 〈0|T

(
ϕ̂†(x)ϕ̂†(y)

)
|0〉 = 0. (9.38)

9.3 Feynman propagator of Dirac field
The mode expansions of the Dirac field, Eqs. (8.8) and (8.9), involve two independent types of
operators: b and d. The vacuum expectation value of a (time ordered) product of field operators
is nonzero only if we take Ψ̂ together with ˆ̄Ψ. Hence we define the Feynman propagator of the
Dirac field

i(SF )αβ(x− y) = 〈0|T
(
ψ̂α(x)

ˆ̄ψβ(y)
)
|0〉 , (9.39)

where now the time ordering

T
(
ψ̂α(x)

ˆ̄ψβ(y)
)
= θ(x0 − y0)ψ̂α(x)

ˆ̄ψβ(y)− θ(y0 − x0) ˆ̄ψβ(y)ψ̂α(x) =

{
ψ̂α(x)

ˆ̄ψβ(y), x0 > y0

− ˆ̄ψβ(y)ψ̂α(x), y0 > x0

(9.40)
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includes a minus sign, which, similarly as for the normal ordering, ensures that the fermionic
fields can be freely anticommuted under the time ordering sign. (Also, with the minus sign SF
will turn out to be a Green’s function of the Dirac equation.)

Substituting the mode expansion of the Dirac field we obtain (after a straightforward calcu-
lation)

i(SF )αβ(x− y) =
∑
s

∫
d3p

(2π)3
m

ωp

(
θ(x0 − y0)uα(p, s)ūβ(p, s)e

−ip·(x−y)

− θ(y0 − x0)vα(p, s)v̄β(p, s)e
ip·(x−y)

)∣∣∣
p0=ωp

. (9.41)

The sum over the spin s can be carried through by virtue of the identities∑
s

u(p, s)ū(p, s) =
/p+m

2m
,
∑
s

v(p, s)v̄(p, s) =
/p−m

2m
, (9.42)

derived in Section 3.2, Eqs. (3.24) and (3.27). (We have used the Feynman ‘slash’ notation
γµpµ ≡ /p.) This leads to

iSF (x− y) =

∫
d3p

(2π)32ωp

(
θ(x0 − y0)(/p+m)e−ip·(x−y) − θ(y0 − x0)(/p−m)eip·(x−y)

)∣∣∣
p0=ωp

= (i/∂ +m)

∫
d3p

(2π)32ωp

(
θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)eip·(x−y)

)∣∣∣
p0=ωp

− iγ0δ(x0 − y0)

∫
d3p

(2π)32ωp

(
e−ip·(x−y) − eip·(x−y)

)∣∣∣
p0=ωp

, (9.43)

where in the first term we recognize the Feynman propagator of the Klein-Gordon field (see
Eqs. (9.14) and (9.19)), and the second term vanishes since the delta function identifies x0 = y0

and the integrand is then an odd function of p:∫
d3p

(2π)32ωp

(
eip·(x−y) − e−ip·(x−y)

)
=

∫
d3p

(2π)32ωp
2i sin

(
p · (x− y)

)
= 0. (9.44)

Hence,

iSF (x− y) = (i/∂ +m)i∆F (x− y) = i

∫
d4p

(2π)4
/p+m

p2 −m2 + iε
e−ip·(x−y). (9.45)

This relation between the Dirac and the Klein-Gordon field’s Feynman propagators makes it
particularly clear that SF is a Green’s function of the Dirac equation, since

(i/∂ −m)SF (x− y) = (i/∂ −m)(i/∂ +m)∆F (x− y) = (−�x −m2)∆F (x− y) = δ(x− y). (9.46)

(Note that there is also an implicit identity matrix accompanying the δ-function that carries the
matrix components of the expression.)

9.4 Feynman propagator of Schrödinger field
For completeness, let us also examine the case of a free non-relativistic (bosonic or fermionic)
field ψ̂(x, t) introduced in Section 6.2. We note that the function

K(x, t;x0, t0) = 〈0| ψ̂(x, t)ψ̂†(x0, t0) |0〉 (9.47)
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is a solution of the Schrödinger equation,

(i~∂t −Hx)K(x, t;x0, t0) = 〈0| (i~∂t −Hx)ψ̂(x, t)ψ̂
†(x0, t0) |0〉 = 0 (Hx = − ~2

2m∆x + V (x))
(9.48)

with the initial condition

K(x, t0;x0, t0) = 〈0| ψ̂(x, t0)ψ̂†(x0, t0) |0〉 = 〈0| [ψ̂(x, t0), ψ̂†(x0, t0)]∓ |0〉 = δ(x− x0). (9.49)

(Here [ , ]− ≡ [ , ] corresponds to bosons, while [ , ]+ ≡ { , } to fermions, and a use has been
made of Eqs. (6.31) and (6.52), respectively.) In the second step we used the fact that the
non-relativistic field operator consists of annihilation operators only, ψ̂(x, t) =

∑
k âk(t)uk(x),

and so it annihilates the vacuum state, ψ̂(x, t) |0〉 = 0. In the last step we employed the bosonic
commutation (6.28), or fermionic anticommutation relations (6.51), respectively. Note that unlike
in the relativistic case, Eq. (9.21), the overlap between the states ψ̂†(x, t) |0〉 with different x is
zero (the states are completely local).

The non-relativistic Feynman propagator GF is defined as usual,

iGF (x, t;x0, t0) = 〈0|T
(
ψ̂(x, t)ψ̂†(x0, t0)

)
|0〉 = θ(t− t0)K(x, t;x0, t0), (9.50)

where the term with θ(t0 − t) has automatically vanished. A simple differentiation shows that
this is a Green’s function of the Schrödinger equation:

(i~∂t −Hx)iGF (x, t;x0, t0) = i~δ(t− t0)δ(x− x0). (9.51)

It is worth to note that the quantity K is commonly referred to as the quantum-mechanical
propagator, and it can be represented by the quantum-mechanical Feynman path integral

K(xb, tb;xa, ta) =

∫ x(tb)=xb

x(ta)=xa

Dx(t) e
i
~S[x(t)], where S[x(t)] =

∫ tb

ta

dt
(m
2
ẋ2(t)− V (x(t))

)
(9.52)

is the classical action. It gives the probability amplitude of transition from a point xa at time
ta to a point xb at time tb.
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9.5 Exercises
Exercise 36. Integral representation of the Heaviside step function. Verify the following integral
representation of the Heaviside step function:

θ(t) = lim
ε→0+

i

2π

∫ +∞

−∞

e−itx

x+ iε
dx =

{
1, t > 0

0, t < 0
. (9.53)

Solution:

We provide two derivations as both of them are conceptually interesting.

1. Application of the Sokhotski formula (with infinitesimal ε > 0) ,

1

x+ iε
= P

1

x
− iπδ(x), (9.54)

yields

i

2π

∫ +∞

−∞

e−itx

x+ iε
=

i

2π

∫
R\[−ε,ε]

e−itx

x
dx+

1

2
=

∫
R\[−ε,ε]

sin(tx)

2πx
dx+

1

2
=

∫ ∞

0

sin(tx)

πx
dx+

1

2
.

(9.55)
The remaining integral, known as the Dirichlet integral, is given by (formula 3.721:1 in
[12]) ∫ ∞

0

sin(tx)

x
dx = sgn(t)

∫ ∞

0

sin(x)

x
dx = sgn(t)

π

2
. (9.56)

Altogether we have
i

2π

∫ +∞

−∞

e−itx

x+ iε
dx =

sgn(t)

2
+

1

2
= θ(t) (9.57)

(with θ(0) = 1
2 ).

2. Alternatively, we make use of the methods of complex contour integration, namely the
Cauchy integral formulas for a holomorphic function f(z),∮

Γ

f(z) dz = 0 and 1

2πi

∮
Γ

f(z)

z − z0
dz = f(z0) (z0 counterclockwise encircled by Γ).

(9.58)
In our problem, f(z) = e−itz and z0 = −iε, where ε > 0.
For t > 0 we take a sequence of (counterclockwise oriented) semicircles of radius R, ΓR,
that close in the lower half-plane, and hence enclose the pole. We have z = x, dz = dx
along the segment from R to −R, and z = Reiϕ, dz = izdϕ along the arc. Thus,

e−it(−iε) =
1

2πi

∮
ΓR

e−itz

z + iε
dz =

1

2πi

∫ −R

+R

e−itx

x+ iε
dx+

∫ 2π

π

iReiϕ

2πi

e−itR cosϕetR sinϕ

Reiϕ + iε
dϕ.

(9.59)
Now, crucially, the second integral on the right-hand side vanishes in limit R→ ∞ (due to
t sinϕ being negative for ϕ ∈ (π, 2π), and the integrand being dominated in absolute value
by a constant, e.g., 1

π ). So, we conclude that

e−tε =
i

2π

∫ +∞

−∞

e−itx

x+ iε
dx (t > 0). (9.60)
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For t < 0 we take (counterclockwise oriented) semicircles that close in the upper half-plane,
so that t sinϕ is again negative. These contours do not encircle the pole, and so we have

0 =

∫ +R

−R

e−itx

x+ iε
dx+

∫ π

0

iReiϕe−itR cosϕetR sinϕ

Reiϕ + iε
dϕ

R→∞−−−−→
∫ +∞

−∞

e−itx

x+ iε
dx = 0 (t < 0).

(9.61)
Combining the two cases and taking the limit ε→ 0+ yields Eq. (9.53).

Exercise 37. Feynman propagator is a Green’s function. Show (by a direct calculation) that
the Feynman propagator of the Klein-Gordon field

i∆F (x− y) = 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉 (9.62)

satisfies the equation
(�x +m2)∆F (x− y) = −δ(x− y). (9.63)

Solution:

We take into account the definition of time ordering,

T
(
φ̂(x)φ̂(y)

)
= θ(x0 − y0)φ̂(x)φ̂(y) + θ(y0 − x0)φ̂(y)φ̂(x), (9.64)

and the rule for differentiation of the Heaviside step function (all derivatives in this exercise will
be with respect to the x coordinates), ∂0θ(x0 − y0) = δ(x0 − y0), to find

∂0T
(
φ̂(x)φ̂(y)

)
= δ(x0 − y0)φ̂(x)φ̂(y)− δ(y0 − x0)φ̂(y)φ̂(x)

+ θ(x0 − y0)∂0φ̂(x)φ̂(y) + θ(y0 − x0)φ̂(y)∂0φ̂(x)

= δ(x0 − y0)
[
φ̂(x), φ̂(y)

]∣∣∣
x0=y0

+ T
(
∂0φ̂(x)φ̂(y)

)
= T

(
∂0φ̂(x)φ̂(y)

)
, (9.65)

where we have used the equal-time commutation relations (9.1). Similarly,

∂20T
(
φ̂(x)φ̂(y)

)
= δ(x0 − y0)

[
∂0φ̂(x), φ̂(y)

]∣∣∣
x0=y0

+ T
(
∂20 φ̂(x)φ̂(y)

)
= −i δ(x0 − y0)δ(x− y) + T

(
∂20 φ̂(x)φ̂(y)

)
, (9.66)

so finally we observe that

(�x +m2)∆F (x− y) = (∂20 − ∂i∂i +m2)(−i) 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉

= (−i)2δ(x− y)〈0|0〉 − i 〈0|T
(
(∂20 − ∂i∂i +m2)φ̂(x)φ̂(y)

)
|0〉

= −δ(x− y). (9.67)

Exercise 38. Feynman propagator of the Klein-Gordon field in position space. Show that for
equal-time space-like separated points the Feynman propagator of the Klein-Gordon field is given
by the formula

i∆F (x− y, 0) =
m

(2π)2
K1(m|x− y|)

|x− y|
, (9.68)

where K1 is a Bessel function. Find the limit m→ 0.
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Solution:

According to Eq. (9.21) we need to calculate the integral

i∆F (x− y, 0) =

∫
d3p

(2π)32ωp
eip·(x−y) =

∫ ∞

0

dP

(2π)3
P 2

2
√
P 2 +m2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ eiPR cos θ,

(9.69)
where we have denoted R ≡ |x − y|, and introduces spherical coordinates (P ≡ |p|, θ, ϕ) in the
momentum space with the ‘pz-axis’ pointing along the vector x − y. The angular integrations
can be carried out yielding

i∆F (x− y, 0) =

∫ ∞

0

dP

(2π)2
P 2

2
√
P 2 +m2

[
−e

iPR cos θ

iPR

]π
0

=
1

R

∫ ∞

0

dP

(2π)2
P sin(PR)√
P 2 +m2

. (9.70)

Further rearrangements reveal an integral representation of the Bessel function K0 (see formula
3.754:2 in Ref. [12]):

i∆F (x− y, 0) = − 1

(2π)2
1

R

∂

∂R

∫ ∞

0

dP
cos(PR)√
P 2 +m2

= − 1

(2π)2
1

R

∂

∂R
K0(mR) =

m

(2π)2
K1(mR)

R
,

(9.71)
where in the last step we used formula 8.486:18 of [12].

The asymptotics of the K1 function are given by formulas 8.446 and 8.451:6 of [12],

K1(z) ∼
1

z
(for z � 1) and K1(z) ∼

√
π

2z
e−z (for z � 1). (9.72)

In the limit m→ 0 we therefore obtain

lim
m→0

i∆F (x− y, 0) =
1

(2π)2
1

R2
. (9.73)

Exercise 39. Particle creation by a classical source. Consider the Lagrangian

L (φ, ∂µφ, x) =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 + J(x)φ (9.74)

of a one-component Klein-Gordon field coupled to an external (Schwinger) source J(x), which is
an explicit classical function of x. Assume that J(x) vanishes outside of the time interval (0, T ).
Let |0〉 denote the vacuum state before t = 0, i.e., before the intervention of the source J .

For t < 0 the vacuum expectation value of the total four-momentum clearly vanishes,
〈0| P̂µ(t) |0〉 = 0. Determine

〈0| P̂µ(t) |0〉 for t > T. (9.75)

(Note that P̂µ(t), and its expectation values, are not a priori conserved quantities since the
Lagrangian (9.74) depends explicitly on time.)

Solution:

The equation of motion for the given Lagrangian reads

(�x +m2)φ̂(x) = J(x). (9.76)

(The source J can therefore be interpreted as an external driving force.) A general solution
consists of the solution of the homogeneous problem φ̂0(x), given by the mode expansion (9.2),
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and a particular solution given by the convolution of the right-hand side with a Green’s function of
the Klein-Gordon operator. We use the retarded propagator ∆R, which satisfies (�x+m2)∆R(x−
y) = −δ(x− y), and write

φ̂(x) = φ̂0(x)−
∫
d4y∆R(x− y)J(y). (9.77)

Eqs. (9.2) and (9.30) then yield

φ̂(x) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + â†p e
ip·x
)

+

∫
d4y J(y) iθ(x0 − y0)

∫
d3p

(2π)32ωp

(
e−ip·(x−y) − eip·(x−y)

)
. (9.78)

Here, and also in the following, p0 = ωp.
We are interested in times x0 = t > T , for which the source J “has passed”. In this case

θ(x0 − y0) is effectively equal to 1, and we can write

φ̂(x) =

∫
d3p√

(2π)32ωp

(
â′pe

−ip·x + â′p
†eip·x

)
, â′p = âp +

i J̃(p)√
(2π)32ωp

, J̃(p) =

∫
d4y J(y)eip·y.

(9.79)
Now, since the commutation relations for â′p, â′p† and âp, â†p are identical, we can immediately
write the formula for the total four-momentum operator at times t > T (cf. Eq. (7.22)):

P̂µ(t) =

∫
d3p pµ â

′
p
†â′p =

∫
d3p pµ

(
â†p − i J̃∗(p)√

(2π)32ωp

)(
âp +

i J̃(p)√
(2π)32ωp

)
. (9.80)

The ensuing vacuum expectation value reads

〈0| P̂µ(t) |0〉 =
∫

d3p pµ
(2π)32ωp

|J̃(p)|2 (t > T ), (9.81)

which is nonzero. The classical source has excited the quantum field, i.e., has created particles.
With respect to the annihilation operators â′p the state |0〉 is no longer ‘empty’: â′p |0〉 6= 0.



Chapter 10

Canonical quantization of
electromagnetic field

10.1 Classical electromagnetism
The ‘Maxwell’ Lagrangian

LM (Aµ, ∂µAν) = −1

4
FµνF

µν , where Fµν = ∂µAν − ∂νAµ = −Fνµ (10.1)

yields the equations of motion

∂LM

∂Aν
− ∂µ

∂LM

∂(∂µAν)
=

1

2
∂µ

(
∂Fρσ

∂(∂µAν)
F ρσ

)
=

1

2
∂µ

(
(δµρ δ

ν
σ − δνρδ

µ
σ)F

ρσ
)
= ∂µF

µν = 0, (10.2)

which is a half of the (sourceless) Maxwell equations of electrodynamics. The other half is a
consequence of the definition of the Faraday tensor Fµν in terms of the electromagnetic four-
potential Aµ, and of commutativity of partial derivatives:

∂µFνρ + ∂ρFµν + ∂νFρµ = 0. (10.3)

Traditional form of the Maxwell equations can be recovered by relating Fµν to the electric and
magnetic field intensities E and B via Eq. (4.2).

In terms of Aµ the Maxwell equations (10.2) read

∂µF
µ
ν = �Aν − ∂µ∂νA

µ = (gµν�− ∂µ∂ν)A
µ = 0, (10.4)

which has a particularly simple form with the Lorenz gauge condition imposed,

∂µA
µ = 0 → �Aν = 0. (10.5)

(This gauge condition is named after Ludvig Lorenz, not to be confused with Hendrik Lorentz of
Lorentz transformations. Clearly, the Lorenz condition is Lorentz-invariant.) However, without
a gauge fixing condition, the differential operator gµν� − ∂µ∂ν does not have an inverse (i.e.,
a Green’s function), and so the Feynman propagator does not exist. This is because any four-
potential of the form Aµ = ∂µΛ, where Λ(x) is an arbitrary function lies in the kernel of this
operator. The problem stems from gauge invariance of electromagnetism, Aµ → Aµ + ∂µΛ.

116
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One way to resolve this issue is to fix a gauge (commonly, the Coulomb gauge A0 = 0,
∂iA

i = 0), and quantize only the remaining degrees of freedom (recall the advanced quantum
mechanics course). This approach, however, lacks manifest Lorentz covariance, and is therefore
not suitable for perturbative treatment of interacting relativistic quantum field theories.

To retain manifest Lorentz covariance we aim to use the Lorenz gauge condition ∂µA
µ = 0,

but, rather than imposing this gauge explicitly, we define a modified Lagrangian with an extra
‘gauge fixing’ term:

Lξ = −1

4
FµνF

µν − 1

2ξ
(∂ρA

ρ)2, where ξ ∈ R (10.6)

is, for the moment, an arbitrary parameter. The corresponding equations of motion read

∂Lξ

∂Aν
− ∂µ

∂Lξ

∂(∂µAν)
= ∂µF

µν +
1

ξ
∂µ

(
(∂ρA

ρ)
∂(∂σAκ)

∂(∂µAν)
gσκ
)

= ∂µF
µν +

1

ξ
∂ν(∂ρA

ρ) = 0, (10.7)

or, in terms of the four-potential,

∂µ(∂
µAν − ∂νAµ) +

1

ξ
∂ν(∂µA

µ) = �Aν −
(
1− 1

ξ

)
∂ν(∂µA

µ) = 0. (10.8)

This reduces to a simple equation
�Aν = 0 (10.9)

for the choice of the parameter ξ = 1, referred to as the Feynman gauge.
We will assume ξ = 1 from now on, and hence work with the Lagrangian

L = −1

4
FµνF

µν − 1

2
(∂ρA

ρ)2

= −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µAν)(∂

νAµ)− 1

2
(∂µA

µ)(∂νA
ν)

= −1

2
(∂µAν)(∂

µAν) +
1

2
∂µ(Aν∂

νAµ −Aµ∂νA
ν), (10.10)

which is equivalent, after dropping the inessential four-divergence term, to a collection of four
real massless Klein-Gordon fields:

L = −1

2
(∂µAν)(∂

µAν) = −1

2
(∂µA0)(∂

µA0) +
1

2
(∂µAi)(∂

µAi). (10.11)

It is important, however, to mind the minus sign of the zeroth component. Also, note that Aµ
is not a multiplet of scalar fields, but a vector field that transforms in the spin-1 representation
of the Lorentz group,

A′µ(x′) = LµνA
ν(x). (10.12)

The canonical momenta and the Hamiltonian corresponding to the Lagrangian (10.11) are

πµ =
∂L

∂(∂0Aµ)
= −∂0Aµ , H = −1

2

∫
d3x

(
(π0)2+(∇A0)

2
)
+

1

2

3∑
i=1

∫
d3x

(
(πi)2+(∇Ai)2

)
.

(10.13)
The zeroth component of the field is therefore a source of negative energy.

It should be emphasized that the theory with Lagrangian (10.6) only becomes equivalent
with Maxwell’s electromagnetism (Lagrangian (10.1)) once the Lorenz condition ∂µA

µ = 0 is
imposed. Then, the equations of motion (10.9) coincide with Eq. (10.5). Imposing this condition
in the realm of quantum theory requires some care, as we shall see below in Section 10.2.
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It is worth to mention that the methods of path-integral quantization provide a very elegant
(and in fact superior) way of handling gauge invariant theories; not only electromagnetism, but
also more general non-Abelian gauge theories. These methods will be explained in the advanced
quantum field theory course (KTPA2).

10.2 Covariant canonical quantization
We impose the usual equal-time commutation relations for the quantized canonical fields Âµ and
π̂µ = −∂0Âµ:

[Âµ(x, t), π̂
ν(y, t)] = i δνµ δ(x− y) , [Âµ(x, t), Âν(y, t)] = [π̂µ(x, t), π̂ν(y, t)] = 0. (10.14)

A general solution of the equation of motion (10.9) has the mode expansion

Âµ(x) =

3∑
λ=0

∫
d3k√

(2π)32ωk

(
âk,λ εµ(k, λ) e

−ik·x + â†k,λ εµ(k, λ) e
ik·x
)
, where k0 = ωk = |k|,

(10.15)
and where the polarisation vectors εµ(k, λ), assumed real for simplicity, form (for each value of
k) a tetrad indexed by λ = 0, 1, 2, 3, which is

orthonormal: εµ(k, λ) εµ(k, λ
′) = gλλ′ , (10.16)

and complete:
3∑

λ,λ′=0

εµ(k, λ) gλλ′ εν(k, λ
′) = gµν . (10.17)

The time-like unit vector corresponds to λ = 0, and the space-like unit vectors to λ = i = 1, 2, 3.
Specifically, we may choose

εµ(k, 0) = (1,0) and εµ(k, i) = (0, εi(k)), where ε3(k) =
k

|k|
, εi(k) · εj(k) = δij .

(10.18)
Commutation relations between âk,λ and â†k,λ, compatible with the canonical relations (10.14),

are inferred as follows. First, let us cast the mode expansion (10.15) as

Âµ(x) =

∫
d3k√

(2π)32ωk

(
âµ,k e−ik·x + â†µ,k e

ik·x
)
, where âµ,k ≡

3∑
λ=0

âk,λ εµ(k, λ) (10.19)

are the annihilation operators corresponding to the individual field components (labelled by µ).
Remembering the case of a multicomponent Klein-Gordon field, Eq. (7.33), we need to ascertain
that these creation and annihilation operators obey the relation

[âµ,k, â†ν,k′ ] =

3∑
λ,λ′=0

εµ(k, λ) εν(k
′, λ′) [âk,λ, â

†
k′,λ′ ] = −gµν δ(k − k′). (10.20)

Therefore, taking into account Eq. (10.17), the creation and annihilation operators corresponding
to the individual polarization states (labelled by λ) must satisfy

[âk,λ, â
†
k′,λ′ ] = −gλλ′ δ(k − k′) , [âk,λ, âk′,λ′ ] = 0 , [â†k,λ, â

†
k′,λ′ ] = 0. (10.21)
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Since the Lagrangian (10.11) is a sum of independent massless Klein-Gordon Lagrangians
(where the zeroth component carries a negative sign), the total four-momentum operator is
simply given by a sum of four-momentum operators (7.22) (corresponding to a single-component
Klein-Gordon field), with additional minus sign for the zeroth component:

P̂µ =

∫
d3k kµ(−gνρ)â†ν,kâρ,k =

∫
d3k kµ

(
− â†k,0âk,0 +

3∑
λ=1

â†k,λâk,λ

)
, where k0 = ωk.

(10.22)
(Here we have used the definition of âµ,k in Eq. (10.19), and the orthonormality relation (10.16).)
In particular, P̂0 = :Ĥ : is the normal-ordered Hamiltonian. Our current theory has 4 (indepen-
dent) polarization states, one of which (λ = 0) carries negative energies. The electromagnetic
field, on the contrary, has only 2 polarizations (typically linear or circular), which are positive
in energy.

In order to obtain a quantum theory of electromagnetic field we need to impose the Lorenz
gauge condition. However, it is not hard to realize that the commutation relations (10.14) are
incompatible with ∂µÂµ(x) = 0 imposed on the operator level, since

[∂µÂµ(x, t), Âν(y, t)] = [−π̂0(x, t), Âν(y, t)] + [∂iÂi(x, t), Âν(y, t)] = i δ0ν δ(x− y) 6= 0. (10.23)

The correct procedure is more subtle. First, we make the decomposition Âµ(x) = Â
(+)
µ (x) +

Â
(−)
µ (x), where

Â(+)
µ (x) =

3∑
λ=0

∫
d3k√

(2π)32ωk

âk,λ εµ(k, λ) e
−ik·x , Â(−)

µ (x) =
(
Â(+)
µ (x)

)†
, (10.24)

i.e., Â(+)
µ contains all the annihilation operators, whereas Â(−)

µ all the creation operators. Next,
we impose the so-called Gupta–Bleuler condition, which has to hold true for all ‘physical’ states
|α〉 in the Fock space:

∂µÂ(+)
µ (x) |α〉 = 0, which implies 〈α| ∂µÂµ(x) |α〉 = 〈α| ∂µÂ(−)

µ (x) + ∂µÂ(+)
µ (x) |α〉 = 0.

(10.25)
That is, the Lorenz condition holds on the level of expectation values of physical states.

The Gupta-Bleuler condition written out in detail implies

3∑
λ=0

∫
d3k√

(2π)32ωk

âk,λ (−ikµ) εµ(k, λ) e−ik·x |α〉 = 0 →
3∑

λ=0

kµεµ(k, λ) âk,λ |α〉 = 0.

(10.26)
This gets simplified further, since by Eq. (10.18)

kµεµ(k, 1) = kµεµ(k, 2) = 0 , kµεµ(k, 3) = −|k| , kµεµ(k, 0) = k0 = |k|. (10.27)

We obtain
(âk,0 − âk,3) |α〉 = 0 → 〈α| â†k,0âk,0 |α〉 = 〈α| â†k,3âk,3 |α〉 , (10.28)

which reduces the total four-momentum of physical states to a sum of only two (transverse)
polarizations,

〈α| P̂µ |α〉 =
∫
d3k kµ

2∑
λ=1

〈α| â†k,λâk,λ |α〉 . (10.29)
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This gives energy that is always positive.
The Feynman propagator of the electromagnetic field Âµ is for the Feynman “gauge” ξ = 1

simply related (due to its similarity with a multicomponent Klein-Gordon field, Section 9.2.3) to
the Feynman propagator of a one-component Klein-Gordon field with mass m = 0, Eq. (9.19).
With regard to the commutation relation of Eq. (10.20) we find

i(DF )µν(x− y) = 〈0|T
(
Âµ(x)Âν(y)

)
|0〉 = −gµν i∆F (x− y)|m=0 = i

∫
d4k

(2π)4
−gµν
k2 + iε

e−ik·(x−y).

(10.30)
The same result is derived in Exercise 40 directly from the Lagrangian (for generic ξ), rewriting
Eq. (10.6) in the form

Lξ = −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µAν)(∂

νAµ)− 1

2ξ
(∂µA

µ)(∂νA
ν)

=̂
1

2
Aµ
[
gµν�−

(
1− 1

ξ

)
∂µ∂ν

]
Aν , (10.31)

and inverting the bracketed differential operator. Note that the Gupta-Bleuler condition plays
no role in the derivation of the Feynman propagator.

10.3 Proca’s massive vector field
A massive spin-1 field is characterized by the Proca Lagrangian

LP = −1

4
FµνF

µν +
1

2
m2AµA

µ, where Fµν = ∂µAν − ∂νAµ, (10.32)

and where the additional mass term breaks gauge invariance of the theory. The corresponding
Euler-Lagrange equations read

∂µF
µν +m2Aν = (�+m2)Aν − ∂ν(∂µA

µ) = 0. (10.33)

Acting further with ∂ν implies (for m 6= 0)

∂νA
ν = 0 and hence (�+m2)Aν = 0. (10.34)

That is, the Lorentz condition ∂µA
µ = 0 is a consequence of the equations of motion, which in

turn reduce to a multicomponent Klein-Gordon equation (with extra condition ∂µA
µ = 0).

Plane-wave solutions of the form Aµ(x) = εµ(k, λ) e
±ik·x satisfy

k0 = ωk =
√
k2 +m2 and kµεµ(k, λ) = 0, (10.35)

which leads to three independent polarization states

εµ(k, 1) = (0, ε1(k)) , εµ(k, 2) = (0, ε2(k)) , εµ(k, 3) =
( |k|
m
,
ωk

m

k

|k|

)
, (10.36)

where k · ε1,2(k) = 0. The polarizations εµ(k, λ) are (with respect to the direction of motion
k) transverse for λ = 1, 2, and longitudinal for λ = 3. In the ‘massless’ limit m → 0, the Proca
Lagrangian LP reduces to the Maxwell Lagrangian LM of Eq. (10.1). For the longitudinal
polarization, and the corresponding mode, we have

mεµ(k, 3)|m→0 = (|k|,k) → Aµ(x) = kµ e
±ik·x = ∓i∂µe±ik·x. (10.37)
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But the latter is merely a ‘pure gauge’ — it yields zero electromagnetic field, Fµν = 0. That is,
only the two transverse polarizations survive the massless limit.

For canonical quantization of the Proca field see Ref. [2, Ch. 6]. Here we only mention the
result for the Feynman propagator, which follows directly from the Lagrangian (10.32), casting

LP = −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µAν)(∂

νAµ) +
1

2
m2AµA

µ

=̂
1

2
Aµ
(
gµν(�+m2)− ∂µ∂ν

)
Aν . (10.38)

In Exercise 40 we find

Dµν
F,P (x− y) =

∫
d4k

(2π)4
D̃µν
F,P (k) e

−ik·(x−y), with D̃µν
F,P (k) =̂

−gνρ + kνkρ

m2

k2 −m2 + iε
. (10.39)

This can be useful even when dealing with massless vector bosons (photons), if the term kνkρ

m2

disappears during calculations.

10.4 Standard model particles
The free fields that we have studied so far describe all elementary particles of the Standard
model:

1. Spin-0 Klein-Gordon field: Higgs boson.

2. Spin- 12 Dirac field: 6 quarks (up, down, charm, strange, top, bottom), 6 leptons (electron,
muon, tau, and respective neutrinos), and their antiparticles.

3. Spin-1 massless field: photon, 8 gluons.

4. Spin-1 massive Proca field: gauge bosons W± and Z .

The quarks are composed to yield a “zoo” of other subatomic particles — the hadrons. These
fall in two categories, mesons (made of two quarks) and baryons (made of three quarks, for
example neutron and proton).
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10.5 Exercises
Exercise 40. Photon propagator for arbitrary parameter ξ and mass m. Find a Green function
of the operator

gµν(�+m2)−
(
1− 1

ξ

)
∂µ∂ν (10.40)

(with the Feynman’s iε prescription), and study the limits ξ → ∞ and m→ 0.

Solution:

We look for a solution of the equation[
gµν(�+m2)−

(
1− 1

ξ

)
∂µ∂ν

]
Dνρ
F (x− y) = δρµ δ(x− y). (10.41)

In the Fourier representation

Dνρ
F (x− y) =

∫
d4k

(2π)4
D̃νρ
F (k) e−ik·(x−y) , δ(x− y) =

∫
d4k

(2π)4
e−ik·(x−y), (10.42)

we have an algebraic equation[
−δµν (k2 −m2) +

(
1− 1

ξ

)
kµkν

]
(D̃F )

ν
ρ(k) = δµρ . (10.43)

We are looking for an inverse of a matrix of the form aI + bK, where (K)µν = kµkν
k2 is a

projector, K2 = K. In this respect it is useful to realise that any function of a projector is of the
same form,

f(x) =

∞∑
n=0

fnx
n → f(K) = f0I+

( ∞∑
n=1

fn

)
K, (10.44)

and hence make the ansatz
(D̃F )

ν
ρ(k) = α δνρ + β kνkρ. (10.45)

Plugging this into Eq. (10.43) yields

−(k2 −m2)α δµρ − (k2 −m2)β kµkρ +

(
1− 1

ξ

)
αkµkρ +

(
1− 1

ξ

)
βk2 kµkρ = δµρ , (10.46)

which fixes the unknown coefficients as

α = − 1

k2 −m2
, β =

1− ξ

k2 −m2

1

k2 − ξm2
. (10.47)

With Feynman’s iε prescription in the numerators, we finally arrive at the Fourier-space Feynman
propagator

D̃νρ
F (k) = − gνρ

k2 + iε−m2
+

(1− ξ)kνkρ

(k2 + iε−m2)(k2 + iε− ξm2)
. (10.48)

Let us study several limiting cases:

1. ξ → ∞ yields the Feynman propagator of Proca’s massive vector field

D̃νρ
F,P (k) =

−gνρ + kνkρ

m2

k2 −m2 + iε
. (10.49)
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2. m→ 0 yields the Feynman propagator for massless photon, and arbitrary ξ

D̃νρ
F,ξ(k) = − gνρ

k2 + iε
+ (1− ξ)

kνkρ

(k2 + iε)2
. (10.50)

In particular, for

(a) ξ = 1 we recover the propagator in Feynman ‘gauge’, Eq. (10.30) ,
(b) ξ = 0 we obtain the propagator in so-called Landau ‘gauge’,

D̃νρ
F,ξ=0(k) =

−gνρk2 + kνkρ

(k2 + iε)2
, (10.51)

which is transverse in four dimensions: kνD̃νρ
F,ξ=0(k) = 0,

(c) ξ → ∞ (the Maxwell Lagrangian (10.1)) we hit a singularity — the differential oper-
ator (10.40) cannot be inverted. This fact is visible in Eq. (10.43), where the matrix
−gµνk2 + kµkν has nonzero kernel, namely, when applied to kν it gives 0.



Chapter 11

Interacting quantum fields

The previous chapters were dedicated to (canonical) quantization of ‘free’ fields, whose La-
grangians were at most quadratic in the fields and their derivatives. The corresponding equations
of motion, since linear, were relatively easy to solve in terms of normal modes (plane waves), and
these modes (whose quantum excitations were interpreted as particles) evolved independently of
one another. So far, quantum field theory has been a relatively simple subject.

To describe interparticle interactions we need to include higher-order terms that constitute
an interaction part of the Lagrangian. As a simple example, let us consider the Lagrangian

L =
1

2
(∂µφ)(∂

µφ)− m2

2
φ2︸ ︷︷ ︸

L0

− λ

4!
φ4︸ ︷︷ ︸

LI

, (11.1)

which describes a self-interacting real scalar field φ. (The non-relativistic limit, of an analogous
theory with complex field ϕ(x), gives a field theory that describes an ensemble of non-relativistic
particles interacting via contact interaction, Eq. (6.69)). The ensuing equation of motion

(�+m2)φ+
λ

3!
φ3 = 0 (11.2)

is nonlinear, and although certain exact solutions can be obtained, they do not allow to evolve
arbitrary initial conditions.

A general strategy for dealing with interacting field theories is to divide the Lagrangian into
a free (quadratic) part L0, and an interacting part LI (see, for example, Eq. (11.1)), and treat
the interacting part as a perturbation. In quantum theory we correspondingly divide the full
Hamiltonian,

Ĥ = Ĥ0 + ĤI , (11.3)
set up the interaction (Dirac) picture, and develop the perturbation (Dyson) series. An overview
of this standard procedure is provided in the following section.

In the case of Lagrangian (11.1), Ĥ0 is the total Hamiltonian of a free Klein-Gordon field
(7.2), and

ĤI(t) =

∫
d3x

λ

4!
φ̂4(x, t). (11.4)

More generally, if LI does not contain time derivatives of fields then (according to Eqs. (5.39)
and (5.40))

H =

∫
d3x

(
∂L0

∂(∂0φr)
∂0φr − L0 − LI

)
= H0 +HI , where HI = −

∫
d3xLI . (11.5)

124
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11.1 Interaction picture
We assume, for simplicity, that the Hamiltonian H has no explicit time dependence.

Consider a state |α〉 ≡ |α(0)〉 and an operator Â ≡ Â(0) at time t = 0. Their time evolution
depends on which of the three basic pictures of quantum theory (indicated by a superscript) is
chosen:

1. Schrödinger picture

|α(t)〉S = e−itĤ |α〉 ,
ÂS(t) = Â, (11.6)

where the state evolves under the full Hamiltonian Ĥ, while the operator stays constant;

2. Heisenberg picture

|α(t)〉H = |α〉 ,

ÂH(t) = eitĤÂ e−itĤ , (11.7)

where the state remains constant, and the operator evolves under the full Hamiltonian Ĥ;

3. Interaction (or Dirac) picture

|α(t)〉I = eitĤ
S
0 |α(t)〉S = eitĤ

S
0 e−itĤ |α〉 ,

ÂI(t) = eitĤ
S
0 Â e−itĤ

S
0 = eitĤ

S
0 e−itĤÂH(t) eitĤe−itĤ

S
0 , (11.8)

where the operator evolves as in the Heisenberg picture, but only under the free Hamiltonian
ĤS

0 . (Note that since Ĥ0 in general does not commute with the total Hamiltonian Ĥ ≡
ĤS = ĤH , it undergoes nontrivial time evolution ĤH

0 (t) in the Heisenberg picture.)

The above definitions relating states and operators in the three pictures are based on the
requirement that expectation values must be the same regardless of the picture chosen:

S〈α(t)| ÂS(t) |α(t)〉S = H〈α(t)| ÂH(t) |α(t)〉H = I〈α(t)| ÂI(t) |α(t)〉I . (11.9)

The three pictures agree at (arbitrarily chosen) time t = 0.
In the interaction picture, operators, such as, for concreteness, the scalar field operator

φ̂I(x, t), evolve according to the equation

∂tφ̂
I = −i[φ̂I , ĤS

0 ] = −i[φ̂I , ĤI
0 ], (11.10)

where we used the fact that ĤI
0 (t) = eitĤ

S
0 ĤS

0 e
−itĤS

0 = ĤS
0 . This equation has the form of a

Heisenberg equation of motion governed solely by the free part of the Hamiltonian. The field φ̂I
is therefore given by the same mode expansion as in the free-field case, Eq. (7.14), in contrast to
the Heisenberg-picture field φ̂H(x, t), whose evolution is driven by the full Hamiltonian Ĥ. The
‘full’ Heisenberg equation is nonlinear, and in practise intractable (recall Eq. (6.63) for a system
of interacting non-relativistic particles).

The evolution of states in the interaction picture is easily inferred from the Schrödinger
picture via relation (11.8):

|α(t)〉S = e−i(t−t0)Ĥ |α(t0)〉S → |α(t)〉I = eitĤ
S
0 e−i(t−t0)Ĥe−it0Ĥ

S
0 |α(t0)〉I . (11.11)
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Here
Û(t, t0) ≡ eitĤ

S
0 e−i(t−t0)Ĥe−it0Ĥ

S
0 (11.12)

is the evolution operator of the interaction picture, also known as the Dyson operator (not to
be confused with e−i(t−t0)Ĥ , which is the evolution operator of the Schrödinger picture). The
operator (or rather family of operators) Û(t, t0) is clearly unitary (it is a composition of unitary
operators), and satisfies the relations

Û(t0, t0) = 1 , Û(t2, t1)Û(t1, t0) = Û(t2, t0) , Û−1(t1, t0) = Û(t0, t1). (11.13)

It is a unique solution of the differential equation

i∂tÛ(t, t0) = ĤI
I (t)Û(t, t0) , Û(t0, t0) = 1, (11.14)

which results from the following calculation:

∂tÛ(t, t0) = eitĤ
S
0 (iĤS

0 − iĤ)e−i(t−t0)Ĥe−it0Ĥ
S
0 = −i eitĤ

S
0 ĤS

I e
−itĤS

0 Û(t, t0) = −i ĤI
I (t)Û(t, t0).

(11.15)
The solution of Eq. (11.14) can be cast in three different ways, producing three different

representations of the Dyson operator. First of them, Eq. (11.12), features the exponential of
the full Hamiltonian Ĥ, which in practice is intractable. Second is based on the infinitesimal
relation

Û(t+ ε, t0) ≈ Û(t, t0)− iεĤI
I (t)Û(t, t0) ≈ e−iεĤ

I
I (t)Û(t, t0), (11.16)

which, when used ‘infinitely many times’, evolves Û(t0, t0) = 1 to

Û(t, t0) = lim
N→∞

e−iεĤ
I
I (tN−1) . . . e−iεĤ

I
I (t1)e−iεĤ

I
I (t0), where ε ≡ t− t0

N
= tn+1 − tn, tN ≡ t.

(11.17)
It should be stressed that ĤI

I (t) taken at different times in general do not commute, and so the
product of exponentials cannot be reduced to exp

(
− i
∫ t
t0
dt ĤI

I (t)
)
. The representation (11.17)

is often useful in theoretical considerations.
The third representation of Û(t, t0) is obtained by formal integration of Eq. (11.14), and

repeated substitutions of the right-hand side:

Û(t, t0) = 1 + (−i)
∫ t

t0

dt1Ĥ
I
I (t1)Û(t1, t0)

= 1 + (−i)
∫ t

t0

dt1Ĥ
I
I (t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2Ĥ
I
I (t1)Ĥ

I
I (t2)Û(t2, t0)

...

=

∞∑
n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T
(
ĤI
I (t1) . . . Ĥ

I
I (tn)

)
≡ T exp

(
−i
∫ t

t0

dt′ ĤI
I (t

′)

)
, (11.18)

where we employed a general (bosonic) time ordering formula

T
(
Â1(t1) . . . Ân(tn)

)
= Âσ(1)(tσ(1)) . . . Âσ(n)(tσ(n)), where σ ∈ Sn : tσ(1) ≥ . . . ≥ tσ(n),

(11.19)
to rewrite the nested time integrations as∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn︸ ︷︷ ︸∫
t>t1>...>tn>t0

dt1...dtn

ĤI
I (t1)Ĥ

I
I (t2) . . . Ĥ

I
I (tn) =

1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T
(
ĤI
I (t1) . . . Ĥ

I
I (tn)

)
.

(11.20)
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The representation (11.18), known as the Dyson series, is well suited for perturbative calcula-
tions. It is an expansion in the (presumably small) perturbation ĤI

I . For the φ4 interaction
Hamiltonian (11.4) the size of the perturbation is controlled by the parameter λ (the ‘coupling
constant’, or ‘interaction strength’).

11.1.1 Scattering matrix
For asymptotic times t0 → −∞, t → +∞ we introduce the Ŝ operator and the S matrix
(scattering matrix):

Ŝ = Û(+∞,−∞) and Sfi = 〈αf | Ŝ |αi〉 . (11.21)

Sfi is the overlap between an initial state |αi〉 after it has been evolved by Ŝ, and some desired
final state |αf 〉, i.e., the probability amplitude (the ‘scattering amplitude’) of the process under
consideration. Typically, the states describe a group of particles with well-defined on-shell four-
momenta:

|α〉 = |p1, . . .pn〉 ∝ â†p1
. . . â†pn

|0〉 , (11.22)

where we have considered only scalar particles for simplicity, and omitted normalization factors
(see Eq. (7.60)).

In Chapter 12 we will evaluate a few example scattering amplitudes Sfi in the lowest (non-
trivial) order of the Dyson perturbation expansion (11.18). In general, the creation operators in
Eq. (11.22) can be recast in terms of the fields operators φ̂I , and so the scattering amplitudes, at
certain perturbative order, get expressed in terms of vacuum expectation values of time-ordered
products of fields taken at various spacetime points,

〈0|T
(
φ̂I(x1) . . . φ̂

I(xn)
)
|0〉 . (11.23)

An exact formula and its derivation (which goes under the name LSZ reduction) will be provided
in the advanced quantum field theory course (02KTP2), together with the so-called Gell-Mann–
Low formula that takes into account differences between the free-theory vacuum |0〉, and the
vacuum of the full interacting theory (which we neglect for now).

11.2 Wick theorem
The Wick theorem provides a way how to express time-ordered products of field operators φ̂I
(which, according to Eq. (11.10), are effectively free fields) in terms of normal-ordered prod-
ucts and Feynman propagators. This is a crucial simplification in calculations of the scattering
amplitudes Sfi (but also other physical predictions) within the perturbation theory.

All field operators will be by default taken in the interaction picture, and so we shall omit
the superscript “I”. For simplicity, we will initially focus on a one-component real Klein-Gordon
field φ̂ ≡ φ̂I . The Wick theorem, in its ‘generating’ form proven in Exercise 41, states that

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= :exp

(
i

∫
d4xJ(x)φ̂(x)

)
: exp

(
− 1

2

∫
d4xd4yJ(x) i∆F (x− y) J(y)

)
,

(11.24)
where J is an arbitrary real-valued function of a spacetime point (i.e., a generic Schwinger source
— see Exercise 39). From this formula, time-ordered products T

(
φ̂(x1) . . . φ̂(xn)

)
can be obtained
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by taking variational derivatives,

δ

iδJ(y)
T exp

(
i

∫
d4xJ(x)φ̂(x)

)
=

∞∑
n=1

in

n!

∫
d4x1 . . . d

4xn
δ
(
J(x1) . . . J(xn)

)
iδJ(y)

T
(
φ̂(x1) . . . φ̂(xn)

)
=

∞∑
n=1

in−1

n!
n

∫
d4x1 . . . d

4xn−1 J(x1) . . . J(xn−1)T
(
φ̂(x1) . . . φ̂(xn−1)φ̂(y)

)
= T

[
φ̂(y) exp

(
i

∫
d4xJ(x)φ̂(x)

)]
, (11.25)

successively at n spacetime points, and setting J(x) = 0 (∀x).
Equivalently, one can expand both sides of Eq. (11.24), and identify the (symmetrized) coef-

ficients of a monomial J(x1) . . . J(xn). For example, in second order in J we have

i2

2!

∫
d4x1d

4x2 J(x1)J(x2)T
(
φ̂(x1)φ̂(x2)

)
=
i2

2!

∫
d4x1d

4x2 J(x1)J(x2) : φ̂(x1)φ̂(x2) :

− 1

2

∫
d4x1d

4x2 J(x1)J(x2) i∆F (x1 − x2), (11.26)

which gives
T
(
φ̂(x1)φ̂(x2)

)
= : φ̂(x1)φ̂(x2) : + 〈0|T

(
φ̂(x1)φ̂(x2)

)
|0〉 . (11.27)

Symmetrization is trivial in this case as bosonic fields freely commute under both time and
normal ordering, and the Feynman propagator of the Klein-Gordon field, i∆F (x1 − x2) =

〈0|T
(
φ̂(x1)φ̂(x2)

)
|0〉, is symmetric: ∆F (x1−x2) = ∆F (x2−x1) (recall the representation (9.19),

and substitute p → −p). In Exercise 42, similar calculation provides a formula for a four-point
product of fields.

To state the result for an arbitrary number of points x1, . . . , xn let us introduce the shorthand
notation

T (1 . . . n) ≡ T
(
φ̂(x1) . . . φ̂(xn)

)
:1 . . . n : ≡ : φ̂(x1) . . . φ̂(xn) :

〈1 . . . n〉 ≡ 〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉 . (11.28)

Generalizing the formulas (11.27) and (11.68) it turns out that: for n even,

T (1 . . . n) = :1 . . . n :

+ 〈12〉 :3 . . . n : + (1-fold contractions)
...
+ 〈12〉 . . . 〈n−1 n〉+ (n2 -fold contractions), (11.29)

while for n odd,

T (1 . . . n) = :1 . . . n :

+ 〈12〉 :3 . . . n : + (1-fold contractions)
...
+ 〈12〉 . . . 〈n−2 n−1〉 :n : + (n−1

2 -fold contractions). (11.30)
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These formulas look cumbersome, but in practise are easy to implement. A k-fold contraction is
a way of selecting k pairs out of the numbers 1, . . . , n to form propagators; leaving the remaining
numbers under the symbol of normal ordering. We start with no contractions (all fields under
normal ordering), and in each line increase the number of contracted pairs (i.e., the number of
propagators), while summing over all possibilities (‘contraction patterns’). The combinatorics is
nice enough not to produce any numerical factors in front of the individual terms.

11.2.1 Vacuum expectation values
Taking vacuum expectation value of the Wick theorem, Eq. (11.24), renders the normal-ordered
exponential equal to 1, and so we obtain the formula

Z0[J ] ≡ 〈0|T exp
(
i

∫
d4xJ(x)φ̂(x)

)
|0〉 = exp

(
− 1

2

∫
d4x d4y J(x) i∆F (x− y) J(y)

)
(11.31)

for the so-called generating functional Z0[J ] of a free quantum field theory. This identity, together
with Eq. (11.25), can be used to express the n-point (correlation) functions

〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉 = δ

iδJ(x1)
. . .

δ

iδJ(xn)

∣∣∣∣
J=0

〈0|T exp
(
i

∫
d4xJ(x)φ̂(x)

)
|0〉

=
δ

iδJ(x1)
. . .

δ

iδJ(xn)

∣∣∣∣
J=0

exp

(
1

2

∫
d4x d4y iJ(x) i∆F (x− y) iJ(y)

)
(11.32)

in terms of sums of products of propagators (i.e., 2-point functions 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉).

Let us calculate the right-hand side explicitly by expanding the exponential, and keeping
only the terms of n-th order in J . All odd-point functions clearly vanish (in agreement with
Eq. (11.30)) as there are no odd powers of J ,

〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉 = 0 (∀n odd), (11.33)

and for n even we obtain

〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉 = 1

2n/2(n/2)!

∫
d4y1 . . . d

4yn
δ

δJ(x1)
. . .

δ

δJ(xn)

(
J(y1) . . . J(yn)

)
× i∆F (y1 − y2) . . . i∆F (yn−1 − yn)

=
1

2n/2(n/2)!

∫
d4y1 . . . d

4yn
∑
σ∈Sn

δ(y1 − xσ(1)) . . . δ(yn − xσ(n))

× i∆F (y1 − y2) . . . i∆F (yn−1 − yn)

=
1

2n/2(n/2)!

∑
σ∈Sn

i∆F (xσ(1) − xσ(2)) . . . i∆F (xσ(n−1) − xσ(n)).

(11.34)

The resulting sum over all permutations of n elements decomposes into subsets of 2n/2(n/2)!
identical summands, since the order of propagators is irrelevant, as well as the order of points
within each propagator ∆F (due to its symmetricity). Hence we can reduce the sum to only
those permutations that give different n

2 -fold contraction patterns σ ∈ Cn:

〈0|T
(
φ̂(x1) . . . φ̂(xn)

)
|0〉 =

∑
σ∈Cn

i∆F (xσ(1)−xσ(2)) . . . i∆F (xσ(n−1)−xσ(n)) (∀n even). (11.35)
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This result agrees with the last line in Eq. (11.29) (which is the only term on the right-hand side
that survives taking vacuum expectation value).

It is convenient (and also common) to represent the various terms of the sum in Eq. (11.35)
graphically. For each contraction pattern we draw a diagram with n points numbered x1, . . . , xn,
and n/2 edges representing the individual contractions. With the rule that an edge between
points i and j carries a factor i∆F (xi − xj), an n-point correlation function of a real scalar field
can be expressed diagrammatically as a sum over all labelled unoriented graphs with n vertices
and n/2 edges, where each vertex has degree (i.e., the number of neighbours) equal to 1.

As an illustrative example, the 4-point correlation function can be expressed, with the short-
hand notation of Eq. (11.28), as

〈1234〉 = 〈12〉〈34〉+ 〈13〉〈24〉+ 〈14〉〈23〉

=

x1 x2

x3 x4

+

x1 x2

x3 x4

+

x1 x2

x3 x4

. (11.36)

The general result (11.35) can then be depicted as

〈0|
x1 x2

. . .

xn−1 xn

|0〉 =

x1 x2

...

xn−1 xn

+ (n2 -fold contractions). (11.37)

Finally, it is worth to mention that the Wick theorem (11.31) provides a passage between
the canonical (operator) formulation of quantum field theory, and the path-integral formulation
(which will be studied extensively in the advanced course 02KTPA2). To see the main point,
recall Eqs. (6.79) and (6.82) from Exercise 23, which, with ~ = 1 and the replacements A → − i

2A,
~j → i~j, produce the formula

N 2

∫
dNq exp

(
i

2
~q TA ~q + i~j T ~q

)
= exp

(
− i

2
~j TA−1~j

)
. (11.38)

Its continuum version with

~q  φ(x) , A (−�x −m2)δ(x− y) , A−1  ∆F (x− y) (11.39)

(recall Eqs. (9.31) and (9.32)) reads (absorbing the normalization factor N 2 in the definition of
the measure Dφ(x))∫

Dφ(x) ei
∫
d4x 1

2φ(−�x−m2)φ+i
∫
d4x J(x)φ(x) = exp

(
− 1

2

∫
d4x d4y J(x) i∆F (x− y) J(y)

)
= 〈0|T exp

(
i

∫
d4xJ(x)φ̂(x)

)
|0〉 . (11.40)

The left-hand side — the field-theoretic Feynman path integral (or functional integral) — is an ∞-
fold integral over the values of a classical field φ at all spacetime points x. The exponent consists
of the free-theory action plus the ‘source term’ (see the Lagrangian (9.74) in Exercise 39).
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11.2.2 Multiple fields
The Wick theorem extends seamlessly to fields with arbitrary many components (see Eq. (11.64)
in Exercise 41), and also to fermionic fields using Grassmann-valued sources [3, Ch. 4-2]. General
time ordering formula for fermionic operators B̂i(ti) reads

T
(
B̂1(t1) . . . B̂n(tn)

)
= sgn(σ)B̂σ(1)(tσ(1)) . . . B̂σ(n)(tσ(n)), σ ∈ Sn : tσ(1) ≥ . . . ≥ tσ(n).

(11.41)
(Fermionic fields are freely anticommuted under the time ordering symbol T until in chronological
order, when the T can be dropped.)

The equations (11.29) and (11.30) assume the same form even in the multicomponent case,
but with the numbers 1, . . . , n representing not only the spacetime points x1, . . . , xn, but also
the types of fields and their components. Moreover, each term carries a sign (−1)p, where p
is the number of transpositions of fermionic components needed to achieve the desired order of
numbers 1, . . . , n. Note that the propagators 〈12〉 etc. are automatically zero when 1 and 2
correspond to different field components. To give an example,

T
( ˆ̄ψα(x1)Âµ(x2)ψ̂β(x3)) = : ˆ̄ψα(x1)Âµ(x2)ψ̂β(x3) : − i(SF )βα(x3 − x1) :Âµ(x2) : . (11.42)

It is convenient to set up the following diagrammatic representation of the Feynman propa-
gators of the Klein-Gordon field, Eq. (9.19), the Dirac field, Eq. (9.45), and the electromagnetic
field, Eq. (10.30), respectively:

x y

i∆F (x− y)

= 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉

x, α y, β

i(SF )αβ(x− y)

= 〈0|T
(
ψ̂α(x)

ˆ̄ψβ(y)
)
|0〉

x, µ y, ν

i(DF )µν(x− y)

= 〈0|T
(
Âµ(x)Âν(y)

)
|0〉

(11.43)
These are the basic building blocks of quantum field theoretical correlation functions.

11.3 Examples of interacting field theories
11.3.1 φ4-theory
In the advanced quantum field theory course (02KTPA2) we will be dealing with full n-point
correlation functions, i.e., the correlation functions of the full interacting theory. These will be
given by

〈0|T
[
φ̂(x1) . . . φ̂(xn) exp

(
−i
∫ +∞
−∞ dt ĤI

I (t)
) ]

|0〉

〈0|T exp
(
−i
∫ +∞
−∞ dt ĤI

I (t)
)
|0〉

,

∫ +∞

−∞
dt ĤI

I (t) =

∫
d4x

λ

4!
φ̂4(x), (11.44)

and reduce to (11.23) for vanishing interaction strength λ. (Here we consider, for simplicity, a
single scalar field described by the Lagrangian (11.1) with a ‘φ4’ interaction term.)

Perturbative calculation then features terms of the form

(−iλ)m

m!(4!)m

∫
d4y1 . . . d

4ym 〈0|T
(
φ̂(x1) . . . φ̂(xn) φ̂

4(y1) . . . φ̂
4(ym)

)
|0〉 , (11.45)
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where the vacuum expectation values can be depicted diagrammatically as

〈0|
x1

. . .

xn
y1

. . .
ym |0〉 , where

y
≡

y y y y

,

(11.46)

and evaluated with a help of the Wick theorem, Eq. (11.37). According to this the dangling
‘legs’ of the ‘prediagram’ (11.46) get connected into edges in all possible ways, producing a sum
of all graphs (Feynman diagrams in the position space) with m 4-valent vertices y1, . . . , ym (the
‘interaction vertices’), and n single-valent vertices x1, . . . , xn (the ‘external points’).

The edges represent Feynman propagators i∆F , and the interaction vertices, as a rule, im-
plicitly carry the coupling constant, and are integrated over:

y
≡ −iλ

∫
d4y , (11.47)

As an illustration of these diagrammatic techniques, we study in Exercise 43 the full two-point
correlation function (the full propagator) of the φ4-theory in first-order perturbation theory.

11.3.2 Yukawa interaction
A basic interaction that couples different kinds of fields (namely, a scalar boson with mass M
and a fermion with mass m) is the Yukawa interaction, characterized by the last term in the
Lagrangian

L =
1

2
(∂µφ)(∂

µφ)− M2

2
φ2 + Ψ̄(iγµ∂µ −m)Ψ −gΨ̄Ψφ︸ ︷︷ ︸

LI

. (11.48)

The corresponding interaction vertex has three legs (one fermion, one anti-fermion, and one
scalar):

y
≡ −ig

∫
d4y. (11.49)

We shall make use of the Yukawa interaction in examples of decay and scattering processes
in Chapter 12.

11.3.3 Quantum electrodynamics
Classical electrodynamics describes the electromagnetic field and its interaction with (electri-
cally charged) matter. In quantum electrodynamics, the electromagnetic field is quantized, and



CHAPTER 11. INTERACTING QUANTUM FIELDS 133

material particles (most typically, electrons with charge q = −|e| and spin 1
2 ) are excitations of

a quantized Dirac field.
The interaction between the Dirac and electromagnetic field is introduced via minimal cou-

pling, ∂µ → Dµ = ∂µ + iqAµ (see Section 4.1), yielding the ‘Maxwell-Dirac’ Lagrangian

L = −1

4
FµνF

µν + Ψ̄
(
iγµ(∂µ + iqAµ)−m

)
Ψ = −1

4
FµνF

µν + Ψ̄(iγµ∂µ −m)Ψ −qΨ̄γµΨAµ︸ ︷︷ ︸
LI

.

(11.50)
(In quantum theory we also need to include the ‘gauge fixing’ term − 1

2ξ (∂ρA
ρ)2 from Eq. 10.6.)

Variations with respect to Ψ̄ and Aµ produce the equations of motion

(iγµDµ −m)Ψ = 0 and ∂µF
µν = qΨ̄γνΨ, (11.51)

respectively. Note that the Dirac current qΨ̄γµΨ figures on the right-hand side of the Maxwell
equations as a source of the electromagnetic field, i.e., as an electromagnetic four-current jµ.

The interaction term LI is depicted by the vertex

α

y

β

µ ≡ −iq(γµ)αβ
∫
d4y. (11.52)

11.3.4 Standard model interactions
In Section 10.4 we briefly reviewed the particle content of the Standard model. The particles’
mutual interactions (or self-interactions in some cases) are embodied in various interaction terms
of the Standard model Lagrangian. Without going into details, let us just note that all the
previous examples of interaction vertices, (11.47), (11.49) and (11.52), play their role.

Other Standard model vertices are supplied by the non-Abelian (or Yang-Mills) gauge theories
that describe gluons and gauge bosons, the mediators of the strong and weak interactions. In
these theories, the “electromagnetic” four-potential is generalized to a matrix-valued object Aµ =
AaµTa, where Ta are generators of a certain ‘gauge group’ of internal symmetries. The covariant
derivative Dµ = ∂µ + igAµ defines a matrix-valued “Faraday tensor” (cf. Eq. (4.8))

Fµν =
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ,Aν ], (11.53)

where the last term is present due to the non-commutativity of the matrices Aµ. The ensuing
non-Abelian generalization of the Maxwell Lagrangian,

L = −1

4
Tr(FµνF

µν), (11.54)

contains third- and fourth-order terms, i.e., interactions between the gauge fields Aaµ.
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11.4 Exercises
Exercise 41. Proof of the Wick theorem. Show that for a free one-component real Klein-Gordon
field φ̂(x), and an arbitrary function J(x),

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= :exp

(
i

∫
d4xJ(x)φ̂(x)

)
: exp

(
− 1

2

∫
d4xd4yJ(x) i∆F (x− y) J(y)

)
.

(11.55)

Solution:

We divide the proof into three steps.

1. Let us cast the left-hand side as

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= lim
T→∞

T exp
(
−i
∫ T

−T
dt ĤI

I (t)
)
, ĤI

I (t) = −
∫
d3xJ(x, t)φ̂(x, t),

(11.56)
and introduce a time slicing (tn)

N
n=0 such that t0 = −T , tN = T , N∆t = 2T . It is

convenient to use the representation (11.17) of the time-ordered exponential, and employ
the restricted Baker-Campbell-Hausdorff formula eAeB = eA+Be

1
2 [A,B], Eq. (2.13), where for

A and B we take ĤI
I (t) at different times. (This is justified since [φ̂(x), φ̂(y)] = i∆(x− y),

the Pauli-Jordan function of Eq. (9.3), and hence [ĤI
I (t), Ĥ

I
I (t

′)] ∈ C.) We obtain

T exp
(
− i

∫ T

−T
dt ĤI

I (t)
)
≈ e−i∆tĤ

I
I (tN−1) . . . e−i∆tĤ

I
I (t1)e−i∆tĤ

I
I (t0)

= e−i∆tĤ
I
I (tN−1) . . . e−i∆tĤ

I
I (t2)e−i∆t(Ĥ

I
I (t1)+Ĥ

I
I (t0))e−

1
2 (∆t)

2[ĤI
I (t1),Ĥ

I
I (t0)]

= e−i∆t
∑N−1

n=0 Ĥ
I
I (tn)e−

1
2

∑
n>n′ (∆t)

2[ĤI
I (tn),Ĥ

I
I (tn′ )]

≈ exp
(
− i

∫ T

−T
dt ĤI

I (t)
)
exp

(
− 1

2

∫ T

−T
dt dt′ θ(t− t′)[ĤI

I (t), Ĥ
I
I (t

′)]
)
, (11.57)

that is,

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= exp

(
i

∫
d4xJ(x)φ̂(x)

)
× exp

(
− 1

2

∫
d4x d4y J(x)J(y)θ(x0 − y0)[φ̂(x), φ̂(y)]

)
. (11.58)

2. Now we will rewrite the normal-ordered part of Eq. (11.55). To this end we divide the field
operator into two parts,

φ̂(x) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + â†p e
ip·x
)
= φ̂(+)(x) + φ̂(−)(x), (11.59)

the part φ̂(+)(x) containing all the annihilation operators, and the part φ̂(−)(x) containing
all the creation operators. Normal ordering puts φ̂(+) to the right of φ̂(−), so

: exp
(
i

∫
d4xJ(x)φ̂(x)

)
: = exp

(
i

∫
d4xJ(x)φ̂(−)(x)

)
exp

(
i

∫
d4xJ(x)φ̂(+)(x)

)
= exp

(
i

∫
d4xJ(x)φ̂(x)

)
exp

(
− 1

2

∫
d4x d4y J(x)J(y)[φ̂(−)(x), φ̂(+)(y)]

)
, (11.60)
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where in the last step we used again the Baker-Campbell-Hausdorff identity. Combining
expressions (11.58) and (11.60) yields

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= :exp

(
i

∫
d4xJ(x)φ̂(x)

)
:

× exp

(
− 1

2

∫
d4x d4y J(x)J(y)

(
θ(x0 − y0)[φ̂(x), φ̂(y)]− [φ̂(−)(x), φ̂(+)(y)]

))
.

(11.61)

3. To finish the proof we realize that, since φ̂(+)(x) |0〉 = 0 and 〈0| φ̂(−)(x) = 0,

〈0| [φ̂(−)(x), φ̂(+)(y)] |0〉 = −〈0| φ̂(+)(y)φ̂(−)(x) |0〉 = −〈0| φ̂(y)φ̂(x) |0〉 , (11.62)

and so the (number-valued) expression in the second exponential in Eq. (11.61) can be cast
as

θ(x0 − y0)[φ̂(x), φ̂(y)]− [φ̂(−)(x), φ̂(+)(y)]

= 〈0| θ(x0 − y0)φ̂(x)φ̂(y)− θ(x0 − y0)φ̂(y)φ̂(x) + φ̂(y)φ̂(x) |0〉

= 〈0|T
(
φ̂(x)φ̂(y)

)
|0〉

= i∆F (x− y), (11.63)

where we made use of the fact that 1− θ(t) = θ(−t).

Remarks:

Analysing the above proof one may easily ascertain that for a multicomponent bosonic field
(φr) the Wick theorem extends to

T exp
(
i

∫
d4xJr(x)φ̂r(x)

)
= :exp

(
i

∫
d4xJr(x)φ̂r(x)

)
:

× exp
(
− 1

2

∫
d4x d4y Jr(x) 〈0|T

(
φ̂r(x)φ̂s(y)

)
|0〉 Js(y)

)
, (11.64)

where there is now one Schwinger source Jr per each component of the field.

Exercise 42. Four-point operator Wick expansion. Using the Wick theorem (11.55), expand
the time-ordered product

T
(
φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)

)
(11.65)

in terms of normal-ordered products and Feynman propagators.

Solution:
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We expand both sides of Eq. (11.55),

i4

4!

∫
d4x1 . . . d

4x4 J(x1) . . . J(x4)T
(
φ̂(x1) . . . φ̂(x4)

)
=
i4

4!

∫
d4x1 . . . d

4x4 J(x1) . . . J(x4) : φ̂(x1) . . . φ̂(x4) :

+
i2

2!

(
−1

2

)∫
d4x1 . . . d

4x4 J(x1) . . . J(x4) : φ̂(x1)φ̂(x2) : 〈0|T
(
φ̂(x1)φ̂(x2)

)
|0〉

+
1

2!

(
−1

2

)2 ∫
d4x1 . . . d

4x4 J(x1) . . . J(x4) 〈0|T
(
φ̂(x1)φ̂(x2)

)
|0〉 〈0|T

(
φ̂(x3)φ̂(x4)

)
|0〉 ,

(11.66)

and compare coefficients at J(x1) . . . J(x4) (after symmetrizing over x1, . . . , x4). With the short-
hand notation of Eq. (11.28) this gives

1

4!
T (1234) =

1

4!
:1234: +

1

4!

∑
σ∈S4

1

2!

1

2
:σ(1)σ(2) : 〈σ(3)σ(4)〉+ 1

4!

∑
σ∈S4

1

2!

1

22
〈σ(1)σ(2)〉〈σ(3)σ(4)〉,

(11.67)

which simplifies to

T (1234) = :1234:

+ :12: 〈34〉+ :13: 〈24〉+ :14: 〈23〉+ :23: 〈14〉+ :24: 〈13〉+ :34: 〈12〉
+ 〈12〉〈34〉+ 〈13〉〈24〉+ 〈14〉〈23〉. (11.68)

Exercise 43. Full propagator of φ4-theory in first order. In φ4-theory determine the full two-
point function

〈12〉full ≡
〈0|T

[
φ̂(x1)φ̂(x2) exp

(
− iλ

4!

∫
d4x φ̂4(x)

) ]
|0〉

〈0|T exp
(
− iλ

4!

∫
d4x φ̂4(x)

)
|0〉

(11.69)

up to the order λ1. (Use the Wick theorem and diagrammatic representation.)

Solution:

Consider first the denominator of Eq. (11.69) up to first order in λ:

D ≡ 1− iλ

4!

∫
d4y 〈0| φ̂4(y) |0〉 = 1 +

3

4!
y . (11.70)

Here the vertex (which is implicitly integrated over) carries a factor −iλ, and the factor 3 is the
number of ways one can contract 〈0| φ̂4(y) |0〉 to a product of propagators, 〈0| φ̂2(y) |0〉 〈0| φ̂2(y) |0〉.
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The numerator is, up to first order in λ, given by

N ≡ 〈0|T
(
φ̂(x1)φ̂(x2)

)
|0〉 − iλ

4!

∫
d4y 〈0|T

(
φ̂(x1)φ̂(x2)φ̂

4(y)
)
|0〉

= 〈0|
x1 x2

|0〉 − iλ

4!

∫
d4y 〈0|

x1 x2
y

|0〉

=
x1 x2 +

3

4!

x1 x2 y
+

4 · 3
4!

x1

y

x2

. (11.71)

Finally, to determine 〈12〉full = N/D up to order λ1, we calculate

D−1 = 1− 3

4!
y +O(λ2), (11.72)

and

ND−1 =
x1 x2 +

4 · 3
4!

x1

y

x2

+O(λ2). (11.73)

In analytical terms, we have found that

〈12〉full = i∆F (x1 − x2)−
iλ

2

∫
d4y i∆F (x1 − y)i∆F (0)i∆F (y − x2) +O(λ2). (11.74)

Expressing the propagators in momentum space, according to formula (9.19), yields (up to the
order λ1)

〈12〉full = i

∫
d4p

(2π)4
e−ip·(x1−x2)

p2 −m2 + iε
− iλ

2
i∆F (0) i

2

∫
d4y

d4p

(2π)4
d4p′

(2π)4
e−ip·(x1−y)

p2 −m2 + iε

e−ip
′·(y−x2)

p′2 −m2 + iε

= i

∫
d4p

(2π)4
e−ip·(x1−x2)

p2 −m2 + iε
+
iλ

2
i∆F (0)

∫
d4p

(2π)4
e−ip·(x1−x2)

(p2 −m2 + iε)2

= i

∫
d4p

(2π)4
e−ip·(x1−x2)

p2 −m2 + iε

(
1 +

λ

2

i∆F (0)

p2 −m2 + iε

)
. (11.75)

For first order in λ we can now use the identity 1 + λA ≈ 1
1−λA to finally obtain

〈12〉full = i

∫
d4p

(2π)4
e−ip·(x1−x2)

p2 −m2 − λ
2 i∆F (0) + iε

+O(λ2). (11.76)
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That is, we see that the full propagator (up to the order λ1) has the same form as the free
propagator i∆F (x− y), only the mass gets shifted.

Remarks:

The mass shift (or correction) is determined by

i∆F (0) = i

∫
dp0 d

3p

(2π)4
1

p2 −m2 + iε
= i

∫ i∞

−i∞
dp0

∫
d3p

(2π)4
1

p2 −m2
, (11.77)

where we have rotated the integration contour of the variable p0 from the real to imaginary
axis. (According to Figure 9.1 this can be done without crossing the poles.) Substituting
p0 = ip4 (where the variable p4 now runs from −∞ to +∞), and transforming to four-dimensional
spherical coordinates with P =

√
p21 + . . .+ p24,

i∆F (0) = −
∫
dp4 d

3p

(2π)4
1

p24 + p2 +m2
= −

∫
dΩ

∫ ∞

0

dP

(2π)4
P 3

P 2 +m2
. (11.78)

The latter integral over P , however, is clearly divergent, so, in order to keep calculations under
control, one adopts a regularization, such as the momentum cut-off: 0 ≤ P ≤ Λ.

The shifted mass is the one measured in experiments, hence it is called the physical mass (or
renormalized mass) mph. We have the relation

m2
ph = m2 +

λ

2
i∆F (0; Λ). (11.79)

Here mph is a finite value given by experiment, so m(Λ) is viewed as a cut-off dependent quantity
(the bare mass), which tends to infinity as Λ → ∞.

In quantum field theory, infinities are rule rather than exception. They occur as a result of
loops formed in Feynman diagrams. The renormalization procedure provides a systematic way
to treat the infinities by absorbing them into ‘bare’ parameters of the Lagrangian. However, its
success depends on the Lagrangian — some theories are renormalizable (the physically acceptable
ones), while others are not renormalizable.



Chapter 12

Applications in particle physics

12.1 Decay of an unstable particle
Let us start with a concrete example. A scalar boson with mass M (e.g., the Higgs boson) decays
into fermion and anti-fermion (with masses m). Let pA denote the initial four-momentum of the
boson, and let (p1, s1) and (p2, s2) be the four-momenta and spins of the fermion and the anti-
fermion, respectively. Schematically, A → 1 + 2. In view of Eqs. (7.60) and (8.27), we have the
initial and final state

|i〉 = |pA〉 =
√
(2π)32EA â

†
pA

|0〉 ,

〈f | = 〈p1, s1, p̄2, s̄2| =
√

(2π)32E1√
2m

√
(2π)32E2√

2m
〈0| d̂p2,s2 b̂p1,s1 , (12.1)

where the energies are on-shell, i.e., EA =
√
p2
A +M2 and E1,2 =

√
p2
1,2 +m2.

Let us model the decay process by the Yukawa interaction (11.48), for which the interaction
Hamiltonian reads, according to Eqs. (11.5) and (11.48),

HI = −
∫
d3xLI =

∫
d3x gΨ̄Ψφ, (12.2)

and calculate the amplitude

Sfi = 〈f |T exp
(
− ig

∫
d4x ˆ̄Ψ(x)Ψ̂(x)φ̂(x)

)
|i〉 ≈ −ig

∫
d4x 〈f | ˆ̄Ψ(x)Ψ̂(x)φ̂(x) |i〉 (12.3)

in first order in the coupling constant g. Recall the mode expansions (Eqs. (7.14), (8.8) and
(8.9))

φ̂(x) =

∫
d3p√

(2π)32Ωp

(
âp e

−ip·x + â†p e
ip·x
)
= φ̂(+)(x) + φ̂(−)(x),

Ψ̂(x) =
∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
b̂p,su(p, s)e

−ip·x + d̂ †
p,sv(p, s)e

ip·x
)
= Ψ̂(+)(x) + Ψ̂(−)(x),

ˆ̄Ψ(x) =
∑
s

∫
d3p

(2π)3/2

√
m

ωp

(
d̂p,sv̄(p, s)e

−ip·x + b̂ †p,sū(p, s)e
ip·x
)
= ˆ̄Ψ(+)(x) + ˆ̄Ψ(−)(x), (12.4)

139
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where we denote ωp =
√
p2 +m2, and Ωp =

√
p2 +M2. Leaving out all the field products that

do not pair up with the states (and so give automatically zero),

〈f | ˆ̄Ψ(x)Ψ̂(x)φ̂(x) |i〉 = 〈p1, s1, p̄2, s̄2| ˆ̄Ψ(−)(x)Ψ̂(−)(x)φ̂(+)(x) |pA〉 . (12.5)

Now
φ̂(+)(x) |pA〉 =

∫
d3p

√
EA√
Ωp

e−ip·x âpâ
†
pA

|0〉︸ ︷︷ ︸
δ(p−pA)|0〉

= e−ipA·x |0〉 , (12.6)

and for the fermionic fields acting on the ‘bra’ state:

〈p1, s1, p̄2, s̄2| ˆ̄Ψ(−)(x)Ψ̂(−)(x)

=
∑
s,s′

∫
d3p d3p′

√
E1E2√
ωpωp′

〈0| d̂p2,s2 b̂p1,s1 b̂
†
p,sd̂

†
p′,s′︸ ︷︷ ︸

〈0|δs1sδ(p1−p)δs2,s′δ(p2−p′)

ū(p, s)eip·xv(p′, s′)eip
′·x

= 〈0| ei(p1+p2)·xū(p1, s1)v(p2, s2). (12.7)

Thus, we find
〈f | ˆ̄Ψ(x)Ψ̂(x)φ̂(x) |i〉 = ū(p1, s1)v(p2, s2)e

i(p1+p2−pA)·x. (12.8)

The integral in Eq. (12.3) is easily done, and so we arrive at the decay amplitude in first pertur-
bative order

Sfi ≈ −ig ū(p1, s1)v(p2, s2)(2π)
4δ(p1 + p2 − pA). (12.9)

With this example in mind, let us note that for any scattering (or decay) process, and in any
order of perturbation theory, the scattering amplitude assumes the form

Sfi = δfi + (2π)4δ(pf − pi) iMfi, (12.10)

where Mfi is the so-called invariant matrix element (or invariant amplitude), pi is the sum of
four-momenta of particles in the initial state |i〉, and pf is the sum of four-momenta of particles
in the final state |f〉. The delta function expresses conservation of total four-momentum, which
is a consequence of the Lagrangian not depending explicitly on x.

In our decay example, Eq. (12.9),

iMfi ≈ −ig ū(p1, s1)v(p2, s2), (12.11)

and we may represent this object diagrammatically as

pA

p2, s2

p1, s1

where

pA
≡ 1 (incoming scalar particle)

p1, s1
≡ ū(p1, s1) (outgoing fermion)

p2, s2
≡ v(p2, s2) (outgoing anti-fermion)

(12.12)
and where the interaction vertex carries a factor −ig. In fact, general rules (the Feynman
rules for S matrix) can be developed that allow one to represent the invariant matrix element
Mfi graphically in any order of the perturbation theory, effectively bypassing the somewhat
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lengthy derivations based on mode expansions of the field operators. They will be systematically
presented in the advanced course (02KTPA2).

To obtain the probability of a given process we need to take the modulus squared of the
scattering amplitude (12.10). Assuming i 6= f ,

|Sfi|2 = (2π)8 δ(pf − pi)︸ ︷︷ ︸
δ(p=0)

δ(pf − pi)|Mfi|2 = (2π)4V T δ(pf − pi)|Mfi|2, (12.13)

where V is the spatial volume, and T the duration of the process (both tend to infinity), and
they stem from the formula

δ(p = 0) =

∫
d4x

(2π)4
eip·x|p=0 =

V T

(2π)4
, (12.14)

similar to Eq. (7.23). The expression (12.13) has to be normalized by (recall Eqs. (7.61) and
(8.28))

〈p|p〉 = 2Ep(2π)
3δ(3)(0) = 2EpV or 〈p, s|p, s〉 = 2EpV

2m
, (12.15)

respectively, for each bosons or fermions with mass m.
The (differential) probability is obtained by multiplying |Sfi|2

〈i|i〉〈f |f〉 by the number of states in
an infinitesimal neighbourhood of a given final state. For one particle this is given by V d3p

(2π)3 , since
the momentum of a particle in a box of volume V = L3 is, by Eq. (7.24), p = 2π

L k, where k ∈ Z3

a discrete mode label.
For a process A→ 1 + . . .+ n with one initial decaying particle, the (differential) decay rate

can be calculated as

dΓ =
differential probability of the process

time

=
1

T

V d3p1
(2π)3

. . .
V d3pn
(2π)3

|Sfi|2

〈i|i〉〈f |f〉

=
NA
2EA

N1 d
3p1

(2π)32E1
. . .

Nn d
3pn

(2π)32En
(2π)4δ(p1 + . . .+ pn − pA) |Mfi|2, (12.16)

where N = 1 for a boson, and N = 2m for a fermion with mass m. (The latter factors are due
to our normalization conventions for the polarization spinors u and v — see Eq. (3.30).) We also
note that if the final state contains indistinguishable particles, factors 1

nk!
, where nk counts the

multiplicity of particles of species k, have to be included.
Consider for definiteness the initial particle at rest, pA = (mA,0), and only two decay prod-

ucts with equal masses m1 = m2. Integrating dΓ over the final momenta p1 and p2 (and summing
over final spins) provides the total decay rate Γ and the mean lifetime 1/Γ of the particle A. To
this end we need to calculate the integral

I ≡
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(E1 + E2 −mA)δ(p1 + p2) |Mfi|2

=

∫
d3p1

(2π)24E2
1

δ(2E1 −mA) |Mfi|2

=

∫
dΩ

∫ ∞

0

dP P 2

(2π)2
δ(2
√
P 2 +m2

1 −mA)

4(P 2 +m2
1)

|Mfi|2, (P ≡ |p1|). (12.17)
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The last δ-function can be eliminated if we identify

f(P ) ≡ 2
√
P 2 +m2

1 −mA : f(P0) = 0 for P0 =

√
m2
A

4
−m2

1, f ′(P0) =
2P0√
P 2
0 +m2

1

,

(12.18)
and use the formula (7.67), δ(f(P )) = δ(P−P0)

|f ′(P0)| :

I =

∫
dΩ

∫ ∞

0

dP P 2
0

(2π)2
δ(P − P0)

8P0

√
P 2
0 +m2

1

|Mfi|2 =

∫
dΩ

1

32π2

√
m2
A − 4m2

1

mA
|Mfi|2. (12.19)

The total (integrated) decay rate Γ = NA

2mA
N1N2 I reads

Γ =

∫
dΩ

dΓ

dΩ
, where dΓ

dΩ
=
NAN1N2

64π2m2
A

√
m2
A − 4m2

1 |Mfi|2. (12.20)

Here, the quantity under the square root must be non-negative, i.e., mA ≥ 2m1 — the rest mass
of the decaying particle must be greater than the sum of the rest masses of the products.

In Exercise 44 we calculate the total decay rate Γ, including the spin summation, for the
Yukawa theory decay treated at the beginning of this section.

12.2 Scattering cross section
Let us consider scattering processes A + B → 1 + . . . + n involving two particles in the initial
state. (In reality two beams of particles, one of which is viewed as the incoming beam and the
other as the target.)

The probability of a given process per unit time is proportional to the incoming flux 1
V |vA−

vB | (one particle density times “relative” velocity). The proportionality factor is the (differential)
scattering cross section

dσ =
differential probability of the process

(time)× (incident flux)

=
1

T

V

|vA − vB |
V d3p1
(2π)3

. . .
V d3pn
(2π)3

|Sfi|2

〈i|i〉〈f |f〉

=
NANB

2EA2EB |vA − vB |
N1 d

3p1
(2π)32E1

. . .
Nn d

3pn
(2π)32En

(2π)4δ(p1 + . . .+ pn − pA − pB) |Mfi|2.

(12.21)

It measures the likelihood of the given interaction between A and B in units of area, so it can
be visualized as an effective area of the target particle. However, it also depends on the range of
final states considered. (Ultimately, by integrating over all momenta and spins of the final state
particles we obtain the total cross section σ.)

From now on we will focus on processes A+B → 1+2 involving only two outgoing particles.
Based on the conservation law pA+pB = p1+p2 one defines the (Lorentz-invariant) Mandelstam
invariants

s = (pA + pB)
2 = (p2 + p1)

2 = 2pA · pB +m2
A +m2

B ,

t = (pA − p1)
2 = (pB − p2)

2 = −2pA · p1 +m2
A +m2

1,

u = (pA − p2)
2 = (pB − p1)

2 = −2pA · p2 +m2
A +m2

2, (12.22)
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which satisfy
s+ t+ u = m2

A +m2
B +m2

1 +m2
2. (12.23)

In the center-of-mass frame, in which pB = −pA (and, by conservation of momentum, also
p2 = −p1), we have

pA + pB = (EA + EB ,0) → s = (EA + EB)
2, (12.24)

so
√
s is the total energy in the center-of-mass frame. (The other two Mandelstam invariants t

and u are related to the scattering angle between three-momenta pA and p1.)
In addition to working in the center-of-mass frame, let us assume, for simplicity, equal masses:

mA = mB = m1 = m2 = m. In this case EA = EB =
√
s
2 , and since v = p

E ,

EAEB |vA − vB | = |EBpA − EApB | = 2EA |pA| =
√
s

√
s− 4m2

2
. (12.25)

Integration over final-state momenta p1 and p2 in Eq. (12.21) involves the same integral as in
Eqs. (12.17) and (12.19), only with the replacement mA →

√
s:

I|mA→
√
s =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(E1 + E2 −
√
s)δ(p1 + p2) |Mfi|2

=

∫
dΩ

1

32π2

√
s− 4m2

√
s

|Mfi|2. (12.26)

Combining Eqs. (12.21), (12.25) and (12.26), in the case of equal masses the scattering cross
section in the center-of-mass frame is given by

σ =

∫
dΩ

dσ

dΩ
, with dσ

dΩ
=

NANB
2EA2EB |vA−vB |

N1N2

32π2

√
s− 4m2

√
s

|Mfi|2 =
NANBN1N2

64π2s
|Mfi|2.

(12.27)
Let us emphasise that the quantity |Mfi|2 is subject to all constraints that we have gathered
during our derivation: p2 = −p1, E1 = E2 = EA = EB =

√
s
2 , and |p1| =

√
s
4 −m2.

The initial and final states are characterized not only by the particle’s momenta, but also,
possibly, by spins. If not measuring the spins, one should average over the spin states of the
initial particles, and sum over the spin states of the final state particles.

12.2.1 Yukawa potential
Yukawa interaction LI = −gΨ̄Ψφ is capable of describing a scattering A + B → 1 + 2 of two
fermions (of masses m) mediated by a scalar boson (with mass M). In Exercise 45 we identify
the invariant matrix element in second-order perturbation theory as

iMfi ≈ (−ig)2 ū(1)u(A) i

(p1 − pA)2 −M2
ū(2)u(B) − (1 ↔ 2), where ū(1) = ū(p1, s1), etc..

(12.28)
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The first term is represented diagrammatically as

pA p1

q

pB p2 (12.29)

The internal line represents the Fourier transform of the Feynman propagator i∆F , whose four-
momentum q = p1 − pA is ‘off-shell’ (it need not satisfy the relativistic energy-momentum dis-
persion relation q2 =M2). The boson is referred to as a ‘virtual particle’.

In non-relativistic limit |p| � m,

ωp ≈ m , p ≈ (m,p), and u(p, s) =

√
ωp +m√
2m

(
χs

σ·p
ωp+m

χs

)
≈
(
χs
0

)
= u(0, s) (12.30)

according to Eq. (3.22). Hence,

ū(p1, s1)u(pA, sA) ≈ ū(0, s1)u(0, sA) = δs1,sA , ū(p2, s2)u(pB , sB) ≈ δs2,sB , (12.31)

which together with (p1 − pA)
2 ≈ −(p1 − pA)

2 reduces Eq. (12.28) to

iM(NR)
fi ≈ (−ig)2 −i δs1,sA δs2,sB

(p1 − pA)2 +M2
− (1 ↔ 2). (12.32)

In the non-relativistic limit the Yukawa interaction conserves the spin degree of freedom. The
second (‘exchange’) term (1 ↔ 2) accounts for indistinguishability of the particles involved, and
the minus sign is a consequence of their fermionic statistics.

Non-relativistic scattering of two particles can be also described within ordinary quantum
mechanics. There one considers a two-particle Hamiltonian

Ĥ =
p̂2
1

2m
+

p̂2
2

2m︸ ︷︷ ︸
Ĥ0

+V̂ , (12.33)

consisting of the ‘free’ part (kinetic energies of the particles), and an interparticle interaction
potential V̂ = V (x̂1 − x̂2). The initial and final states of the two fermions are antisymmetric,

|i〉 = 1√
2

(
|pA, sA,pB , sB〉 − (A↔ B)

)
, |f〉 = 1√

2

(
|p1, s1,p2, s2〉 − (1 ↔ 2)

)
, (12.34)

where 〈x|p〉 = eip·x, so that 〈p, s|p′, s′〉 = (2π)3δs,s′δ(p − p′) coincides with the normaliza-
tion (8.28) in non-relativistic limit.

The Dyson series (11.18) (with ĤI = V ) provides the scattering amplitude (in the lowest
order in the interaction potential)

S
(QM)
fi = 〈f |T exp

(
− i

∫ +∞

−∞
dt V̂ I(t)

)
|i〉 ≈ −i

∫ +∞

−∞
dt 〈f | V̂ I(t) |i〉 , (12.35)
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where we have assumed that 〈f |i〉 = 0. According to Eq. (11.8) we have V̂ I(t) = eitĤ
S
0 V̂ e−itĤ

S
0 ,

and hence

S
(QM)
fi ≈ −i

∫ +∞

−∞
dt eit

(
p2
1

2m+
p2
2

2m

)
〈f | V̂ |i〉 e−it

(
p2
A

2m+
p2
B

2m

)
= −i 2πδ(Ef − Ei)

1

2

(
δs1sAδs2sB 〈p1,p2| V̂ |pA,pB〉−(A↔B)−(1↔2)+(A↔B, 1↔2)

)
,

(12.36)

where we have denoted Ef ≡ p2
1

2m +
p2
2

2m and Ei ≡ p2
A

2m +
p2
B

2m , and assumed that the interaction
potential does not involve any spin interactions. Furthermore, we employ spatial resolution of
unity

∫
d3x1d

3x2 |x1,x2〉 〈x1,x2| = 1̂ to calculate

〈p1,p2| V̂ |pA,pB〉 =
∫
d3x1d

3x2 V (x1 − x2)e
−i(p1·x1+p2·x2)ei(pA·x1+pB ·x2)

=

∫
d3x1d

3x2 V (x1 − x2)e
−i(p1−pA)·(x1−x2)e−i(p1+p2−pA−pB)·x2 , (12.37)

and the change of integration variables x = x1 − x2, y = x2, d3x1d3x2 = d3x d3y to obtain

〈p1,p2| V̂ |pA,pB〉 = (2π)3δ(3)(pf − pi) Ṽ (p1 − pA), where Ṽ (q) =

∫
d3xV (x)e−iq·x.

(12.38)
Altogether we find the scattering amplitude

S
(QM)
fi ≈ −i (2π)4δ(4)(pf−pi)

1

2

(
δs1,sAδs2,sB Ṽ (p1−pA)−(A↔ B)−(1 ↔ 2)+(A↔ B, 1 ↔ 2)

)
(12.39)

Here the δ-function implies the relation p1 + p2 = pA + pB , which renders the first term equal
to the last term, and the second term equal to the third term. The invariant matrix element is
then identified with a help of Eq. (12.10) as

iM(QM)
fi ≈ (−i)δs1,sAδs2,sB Ṽ (p1 − pA)− (1 ↔ 2). (12.40)

Equating the latter with the quantum field theoretic formula (12.32), i.e., M(QM)
fi = M(NR)

fi ,
leads to the identification

Ṽ (q) = − g2

q2 +M2
→ V (r) = − g2

4π

e−Mr

r
(r ≡ |x|), (12.41)

where the last step — inversion of the Fourier transform from Ṽ (q) to V (r) — is carried out in
Exercise 46. The function V (r) is called the Yukawa potential.

This potential is attractive and ‘short-ranged’ — it effectively vanishes for distances r � ~
Mc

(the Compton wavelength of the boson). For distance 10−15 m (roughly the size of a nucleon)
the corresponding rest energy of the mediating scalar particle is found as

Mc2 =
~c

10−15 m
.
=

10−34 · 3 · 108

10−15
J .
= 3 · 10−11 10

13

1.6
MeV .

= 200MeV. (12.42)

This is in rough agreement with the rest energy of the mediator of the nuclear force, the π0-meson:
135MeV.
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For a scattering of fermion and anti-fermion the Yukawa potential turns out to be again
attractive, as well as for a scattering of anti-fermion and anti-fermion.

In a similar way one can derive the Coulomb potential starting from quantum electrodynamics
and considering a scattering of two electrically charged particles [4, Ch. 4.8]. The interaction
turns out to be attractive for opposite charges (a particle and an anti-particle), and repulsive
for like charges, in agreement with classical electrodynamics. Since the mediator, the photon,
is massless, the factor e−Mr is not present, and one recovers the usual form of the Coulomb
potential V (r) ∝ 1

r , which is ‘long-ranged’.
Instead of forces and potentials between particles, relativistic quantum field theory offers a

more fundamental picture where interactions happen due to an exchange of intermediate ‘virtual’
particles (bosons).
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12.3 Exercises
Exercise 44. Decay in Yukawa theory. The invariant matrix element of a process A→ 1+ 2 in
the first order of Yukawa theory is given by

iMfi ≈ −ig ū(p1, s1)v(p2, s2) (12.43)

(Eq. (12.11)). Determine the total (i.e., integrated over the momenta, and summed over the
spins of the outgoing particles) decay rate Γ in the rest frame of the decaying particle.

Solution:

The total decay rate is given by spin summation of the formula (12.20) (with NA = 1,
N1 = N2 = 2m):

Γ =
∑
s1,s2

∫
dΩ

(2m)2

64π2m2
A

√
m2
A − 4m2

1 |Mfi|2. (12.44)

Here

|Mfi|2 = g2 ū(p1, s1)v(p2, s2)
(
ū(p1, s1)v(p2, s2)

)†
= g2 ū(p1, s1)v(p2, s2) v̄(p2, s2)u(p1, s1)

= g2 Tr
(
u(p1, s1)ū(p1, s1) v(p2, s2)v̄(p2, s2)

)
. (12.45)

The spin sums of Eq. (9.42),∑
s

u(p, s)ū(p, s) =
/p+m

2m
,
∑
s

v(p, s)v̄(p, s) =
/p−m

2m
, (12.46)

allow us to simplify∑
s1,s2

|Mfi|2 =
g2

(2m)2
Tr
(
(/p1 +m)(/p2 −m)

)
=

g2

(2m)2
(4p1 · p2 − 4m2), (12.47)

where we have used the ‘trace’ identities (2.73) and (2.75).
Moreover, by total four-momentum conservation, p1 + p2 = pA = (M,0),

2p1 · p2 = (p1 + p2)
2 − p21 − p22 =M2 − 2m2, (12.48)

where mA =M is the mass of the decaying scalar particle, and m1 = m2 = m is the mass of the
products. Hence, ∑

s1,s2

|Mfi|2 =
2g2

(2m)2
(M2 − 4m2), (12.49)

and plugging this into Eq. (12.44) yields

Γ =
(2m)2

16πM2

√
M2 − 4m2

2g2

(2m)2
(M2 − 4m2) =

g2

8πM2
(M2 − 4m2)3/2. (12.50)

Exercise 45. Scattering in Yukawa theory. Consider a scattering process A+B → 1+2 of spin- 12
fermions with all masses equal (f + f → f + f). Determine the invariant matrix element iMfi

in the lowest nontrivial order of the Yukawa theory. (Assume that the states of the incoming
particles differ from the states of the outgoing particles.)
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Solution:

We have the initial and final state

|i〉 = |pA, sA,pB , sB〉 =
√
(2π)32EA√

2m

√
(2π)32EB√

2m
b̂†pA,sA b̂

†
pB ,sB |0〉 ,

〈f | = 〈p1, s1,p2, s2| =
√
(2π)32E1√

2m

√
(2π)32E2√

2m
〈0| b̂p2,s2 b̂p1,s1 , (12.51)

where m denotes the fermions’ mass, and all the operators b̂, b̂† mutually commute as they
correspond (by assumption) to different states. The scattering amplitude for the case of Yukawa
interaction LI = −gΨ̄Ψφ is

Sfi = 〈f |T exp
(
− ig

∫
d4x ˆ̄Ψ(x)Ψ̂(x)φ̂(x)

)
|i〉 . (12.52)

The lowest nontrivial order (in which the creation and annihilation operators defining the initial
and final state are ‘paired off’ with those supplied by the mode expansions of the fields) is the
second order in g:

Sfi ≈
(−ig)2

2!

∫
d4x d4y 〈f |T

(
ˆ̄Ψ(x)Ψ̂(x)φ̂(x) ˆ̄Ψ(y)Ψ̂(y)φ̂(y)

)
|i〉 . (12.53)

Employing the Wick expansion (11.29), generalized to multiple fields (see the comments in Sec-
tion 11.2.2), the only term that survives taking 〈f | . . . |i〉 is the one with scalar field propagator:

Sfi ≈
(−ig)2

2!

∫
d4x d4y 〈f | : ˆ̄Ψ(x)Ψ̂(x) ˆ̄Ψ(y)Ψ̂(y) : |i〉 〈0|T

(
φ̂(x)φ̂(y)

)
|0〉 . (12.54)

Now recall the mode expansions (12.4) of the fermionic field operators Ψ̂ and ˆ̄Ψ, and retain only
the parts Ψ̂(+) and ˆ̄Ψ(−), containing b̂ and b̂†, as these ‘pair’ with the states (12.51):

〈f | : ˆ̄Ψ(x)Ψ̂(x) ˆ̄Ψ(y)Ψ̂(y) : |i〉 = 〈f | : ˆ̄ψ(−)
α (x)ψ̂(+)

α (x) ˆ̄ψ
(−)
β (y)ψ̂

(+)
β (y) : |i〉

= 〈f | ˆ̄ψ(−)
β (y) ˆ̄ψ(−)

α (x) ψ̂(+)
α (x)ψ̂

(+)
β (y) |i〉 . (12.55)

At this point we plug in the mode expansions of Ψ̂(+) and ˆ̄Ψ(−), and calculate, first,

ψ̂(+)
α (x)ψ̂

(+)
β (y) |i〉 =

∑
s,s′

∫
d3p d3p′

√
EAEB√
ωpωp′

uα(p, s)e
−ip·xuβ(p

′, s′)e−ip
′·y b̂p,sb̂p′,s′ b̂

†
pA,sA b̂

†
pB ,sB |0〉 ,

(12.56)

where the operators can be reduced with a help of the anticommutator Leibniz rule [A,BC] =
{A,B}C −B{A,C}, and the anticommutation relations (8.13) and (8.14):

b̂p,s
[
b̂p′,s′ , b̂

†
pA,sA b̂

†
pB ,sB

]
|0〉 = b̂p,s

(
δs′,sAδ(p

′ − pA) b̂
†
pB ,sB − δs′,sBδ(p

′ − pB) b̂
†
pA,sA

)
|0〉

=
(
δs′,sAδ(p

′ − pA) δs,sBδ(p− pB)− (A↔ B)
)
|0〉 . (12.57)

This leads to

ψ̂(+)
α (x)ψ̂

(+)
β (y) |i〉 =

(
uα(pB , sB)uβ(pA, sA)e

−ipB ·xe−ipA·y − (A↔ B)
)
|0〉 . (12.58)
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Similarly,

〈f | ˆ̄ψ(−)
β (y) ˆ̄ψ(−)

α (x) =
∑
s,s′

∫
d3p d3p′

√
E1E2√
ωpωp′

ūα(p, s)e
ip·xūβ(p

′, s′)eip
′·y 〈0| b̂p2,s2 b̂p1,s1 b̂

†
p′,s′ b̂

†
p,s

= 〈0|
(
ūα(p2, s2)ūβ(p1, s1)e

ip2·xeip1·y − (1 ↔ 2)
)
, (12.59)

so, in total,

〈f | : ˆ̄Ψ(x)Ψ̂(x) ˆ̄Ψ(y)Ψ̂(y) : |i〉 = ū(p1, s1)u(pA, sA)ū(p2, s2)u(pB , sB)e
i(p2−pB)·xei(p1−pA)·y

− (A↔ B)− (1 ↔ 2) + (A↔ B, 1 ↔ 2). (12.60)

Recalling the formula (9.19) for the scalar Feynman propagator (M denoting the mass of the
scalar particle), the scattering amplitude reads

Sfi ≈
(−ig)2

2!

∫
d4x d4y

∫
d4q

(2π)4
i e−iq·(x−y)

q2 −M2 + iε

×
(
ū(1)u(A) ū(2)u(B) ei(p2−pB)·xei(p1−pA)·y − (A↔ B)− (1 ↔ 2) + (A↔ B, 1 ↔ 2)

)
,

(12.61)

where we have adopted a shorthand notation ū(1) = ū(p1, s1), etc. Note that under the x and
y integration, the second term equals the third, and the first term equals the fourth one. The
integrals can be easily performed, yielding

Sfi ≈ (−ig)2 i
∫

d4q

(2π)4

(
(2π)4δ(p2 − pB − q)(2π)4δ(p1 − pA + q)

q2 −M2 + iε
ū(1)u(A) ū(2)u(B) − (1 ↔ 2)

)
= (2π)4δ(p1 + p2 − pA − pB)

(
(−ig)2 ū(1)u(A) i

(p1 − pA)2 −M2 + iε
ū(2)u(B) − (1 ↔ 2)

)
.

(12.62)

Finally, we observe that the iε can be omitted as the denominator is never zero. To see
this, note that in the center-of-mass frame EA = EB = E1 = E2, and hence (p1 − pA)

2 =
−(p1 − pA)

2 < 0. By Eq. (12.10) we identify the invariant matrix element

iMfi ≈ (−ig)2 ū(1)u(A) i

(p1 − pA)2 −M2
ū(2)u(B) − (1 ↔ 2). (12.63)

Exercise 46. Yukawa potential. Find a potential V such that∫
d3y e−iq·y V (y) = − g2

q2 +M2
. (12.64)

Solution:

Applying a further integration
∫
d3q eiq·x(. . .) gives

(2π)3V (x) = −g2
∫
d3q

eiq·x

q2 +M2
, (12.65)

and adopting spherical coordinates in the q-space, (q, θ, ϕ),

V (x) = −g2
∫

d3q

(2π)3
eiq·x

q2 +M2
= − g2

(2π)2

∫ ∞

0

dq q2
∫ π

0

dθ sin θ
eiqr cos θ

q2 +M2
, (12.66)
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where r ≡ |x|. Integration over the angle θ yields

V (x) = − g2

(2π)2ir

∫ ∞

0

dq
q(eiqr − e−iqr)

q2 +M2
= − g2

(2π)2ir

∫ ∞

−∞
dq

q eiqr

q2 +M2
. (12.67)

This integral can be evaluated with a help of the Cauchy formula (9.58), taking as contours
ΓR the counterclockwise semicircles of radius R closed in the upper half of the complex q-plane
(so that the integral over the arc vanishes in large-R limit). One finds

V (x) = − g2

2πr

∮
Γ∞

dq

2πi

q eiqr

(q − iM)(q + iM)
= − g2

4π

e−Mr

r
. (12.68)



Chapter 13

Change of observer in quantum
field theory

13.1 Poincaré transformations
In Chapter 2 we got acquainted with Lorentz transformations. Adding arbitrary (rigid) transla-
tions results in the full group of spacetime isometries (i.e., transformations preserving spacetime
distances) — the Poincaré group. This has 10 parameters in total: 4 translations, 3 rotations,
and 3 boosts. For concreteness, we will study the Poincaré transformations via their action on a
generic multicomponent classical field Φ(x). (Here, unlike in the case of multicomponent scalar
field in Section (7.2), the components of Φ can, and will, transform nontrivially under Lorentz
transformations.)

For a translation x′ = x+ a, the induced transformation of Φ is

Φ′(x′) = Φ(x) → Φ′(x) = Φ(x− a) ≈ Φ(x)− iaµ(−i∂µ)Φ(x), (13.1)

where the infinitesimal form allows us to identify the translation generators

Pµ = −i∂µ. (13.2)

For a Lorentz transformation x′ = Lx, where L = exp
(
− i

2ωµνM
µν
)
, we have x′µ ≈ xµ+ωµνx

ν

on an infinitesimal level (see Eq. (2.19)), and the induced transformation on Φ reads (cf. Eq. 5.69)

Φ′(x′) = D(L)Φ(x) → Φ′(x) = D(L)Φ(L−1x), where D(L) = exp
(
− i

2
ωµνS

µν
)

(13.3)

is certain matrix representation of the Lorentz group generated by the matrices Sµν . For example,
for spinor fields, D(L) = S(L) with Sµν = 1

2σ
µν (see Section 2.3). For infinitesimal parameters

ωµν we find

Φ′(x) ≈
(
I− i

2
ωµνS

µν
)
Φ(xµ − ωµνx

ν)

≈ Φ(x)− i

2
ωµνS

µνΦ(x)− ωµνx
ν∂µΦ(x)

= Φ(x)− i

2
ωµν

(
Sµν + i(xµ∂ν − xν∂µ)

)
Φ(x), (13.4)
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hence identifying the Lorentz generators, which are composed of the orbital part + the internal
spin part,

Mµν = i(xµ∂ν − xν∂µ) + Sµν . (13.5)
In summary, in classical field theory we encounter three different representations of Lorentz

transformations: (1) the defining representation L on spacetime points, with generators Mµν ; (2)
the internal representation D(L) on components of the field, with generators Sµν ; and (3) the
induced representation on functions Φ(x), with generators Mµν .

Under a (continuous) symmetry transformation the quantum states are transformed by an
operator that is unitary (in order to preserve the Fock space scalar product). For example,
translations x′ = x+ a are realized on the Fock space as

|α′〉 = Û(a) |α〉 . (13.6)

Demanding that matrix elements of the quantum field operator Φ̂(x) (such as, e.g., the one-
particle wave-functions in Eqs. (7.60) and (8.29)) transform as classical fields, we find

〈β′| Φ̂(x′) |α′〉 = 〈β| Φ̂(x) |α〉 → Φ̂(x+ a) = Û(a)Φ̂(x)Û†(a) → Û(a) = eia
µP̂µ , (13.7)

where we identified Û(a) based on Eqs. (8.25) and (7.52).
For Lorentz transformations we recall Eq. (13.3). From

|α′〉 = Û(L) |α〉 (13.8)

follows

〈β′| φ̂r(x′) |α′〉 = D(L)rs 〈β| φ̂s(x) |α〉 → D(L)−1Φ̂(Lx) = Û(L)Φ̂(x)Û†(L). (13.9)

The explicit form of the unitary operator Û(L) is found with a help of the angular momentum
tensor. By Section 5.4.2, Eq. (5.71) we have

M0µν = −iπr(Sµν)rsφs − (T 0µxν − T 0νxµ) → M̂µν =

∫
d3x :M̂0µν : . (13.10)

These are (6 independent) components of the total angular momentum operator. In fact, one may
say total total angular momentum operator, as it is the angular momentum tensor integrated over
space, which has both intrinsic (spin) and orbital part. In Exercise 47 we find the commutator

[Φ̂, M̂µν ] = i(xµ∂ν − xν∂µ)Φ̂(x) + SµνΦ̂(x) = MµνΦ̂(x), (13.11)

which can be exponentiated by means of the Campbell identity (2.14), and comparison with
Eq. (13.4) yields

e−
i
2ωµνM̂

µν

Φ̂(x)e
i
2ωµνM̂

µν

= e
i
2ωµνMµν

Φ̂(x) = lim
ε→0

(
1 + ε

i

2
ωµνMµν

)1/ε
Φ̂(x) = D(L)−1Φ̂(Lx).

(13.12)
Thus, we may identify

Û(L) = e−
i
2ωµνM̂

µν

. (13.13)
Note that since the operators P̂µ and M̂µν are normal-ordered, the vacuum state is invariant

under both translations and Lorentz transformations:

Û(a) |0〉 = Û(L) |0〉 = |0〉 (13.14)

This is consistent with the comment under Equation (6.20) — a symmetry of the system entails
symmetry of its vacuum state. All observers that move with constant velocity (they are Lorentz-
boosted with respect to one another) observe the same vacuum state. For mutually accelerated
observers, however, the corresponding vacua differ.
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13.2 Unruh effect
Unruh discovered that an observer accelerating in the Minkowski vacuum sees particles which
have a thermal spectrum, with the temperature being proportional to the acceleration. This
effect is called the Unruh effect, and in this chapter it will be derived in a simplified case. We
shall consider a massless scalar field and assume that the observer is moving with constant
acceleration a in 1+1-dimensional spacetime.

In [13, Ch. 8] it is argued the relation between the Minkowski inertial coordinates (t, x) and
the (so-called Rindler) coordinates pertaining to the accelerated observer, namely τ (the proper
time of the observer) and ξ (a convenient observer’s distance measure), reads

t(τ, ξ) =
1

a
eaξ sinh aτ , x(τ, ξ) =

1

a
eaξ cosh aτ. (13.15)

Note that for ξ = 0 this give the observer’s trajectory and the four-acceleration wµ

xµobs = (t(τ, 0), x(τ, 0)) → wµ =
d2xµobs
dτ2

= a (sinh aτ, cosh aτ) → wµwµ = −a2. (13.16)

To analyze the equation of motion of a massless scalar field in one spatial dimension, i.e.,
the standard wave equation, it is convenient to introduce the ‘light-cone’ coordinates (as in [9,
Ch. 2.8])

u = t− x , v = t+ x : (∂2t − ∂2x)φ = 0 → ∂u∂vφ = 0. (13.17)
Casting

u = −1

a
eaξe−aτ = −1

a
e−aũ, where ũ = τ − ξ,

v =
1

a
eaξeaτ =

1

a
eaṽ, where ṽ = τ + ξ (13.18)

identifies ũ and ṽ as the light-cone coordinates corresponding to τ, ξ. Note that, crucially, u is a
function of ũ only, and likewise v is a function of ṽ only. Hence

∂u∂vφ =
dũ

du

dṽ

dv
∂ũ∂ṽφ = 0 → (∂2τ − ∂2ξ )φ = 0. (13.19)

We have found that the field equation has the same form in both the inertial and the accelerated
frame.

In both frames we may immediately write a general solution in the form of a mode expansion
of the quantized field φ̂. The massless dispersion relation in one-dimensional space reads ωp = |p|,
where p ∈ R, and hence, in Minkowski coordinates,

φ̂ =

∫ +∞

−∞

dp√
2π 2|p|

(
âp e

−i(|p|t−px) + â†p e
i(|p|t−px)

)
=

∫ ∞

0

dω√
2π 2ω

(
âω e

−iωu + â†ω e
iωu + â−ω e

−iωv + â†−ω e
iωv
)
, (13.20)

where we have separated the right-moving modes (with p = ω > 0) and the left-moving modes
(with p = −ω < 0). In the Rindler coordinates, likewise

φ̂ =

∫ +∞

−∞

dp̃√
2π 2|p̃|

(
b̂p̃ e

−i(|p̃|τ−p̃ξ) + b̂†p̃ e
i(|p̃|τ−p̃ξ)

)
=

∫ ∞

0

dΩ√
2π 2Ω

(
b̂Ω e

−iΩũ + b̂†Ω e
iΩũ + b̂−Ω e

−iΩṽ + b̂†−Ω e
iΩṽ
)
. (13.21)
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The u and v parts can be considered separately, and so will focus only on the u part (the v
part is treated in complete analogy). Equating the two expansions (13.20) and (13.21),∫ ∞

0

dΩ√
2π 2Ω

(
b̂Ω e

−iΩũ + b̂†Ω e
iΩũ
)
=

∫ ∞

0

dω√
2π 2ω

(
âω e

−iωu + â†ω e
iωu
)
, where u = −1

a
e−aũ.

(13.22)
provides a relation between the inertial observer’s creation and annihilation operators â†, â, and
the accelerated observer’s creation and annihilation operators b̂†, b̂. We shall see that while the
Minkowski vacuum state |0〉 is annihilate by all âp, it is not annihilated by the operators b̂p̃ (and
therefore contains particles from the point of view of the accelerated observer).

We would like to have an explicit expression for b̂Ω in terms of â and â†. To this end let us
apply the integral

∫ +∞
−∞

dũ√
2π
eiΩ

′ũ(. . .), with Ω′ > 0, on the left-hand side of Eq. (13.22):∫ ∞

0

dΩ√
2Ω

(
b̂Ω δ(Ω

′ − Ω) + b̂†Ω δ(Ω
′ +Ω)

)
=

b̂Ω′
√
2Ω′

, (13.23)

since the argument of δ(Ω′ +Ω) is always greater than 0. On the right-hand side we get∫ ∞

0

dω√
2ω

(
F (ω,Ω′) âω + F (−ω,Ω′) â†ω

)
, where F (ω,Ω) =

∫ +∞

−∞

dũ

2π
exp

(
iΩũ+ i

ω

a
e−aũ

)
.

(13.24)
Therefore,

b̂Ω =

∫ ∞

0

dω

√
Ω

ω

(
F (ω,Ω) âω + F (−ω,Ω) â†ω

)
, (13.25)

and, by Hermitian conjugation,

b̂†Ω =

∫ ∞

0

dω

√
Ω

ω

(
F ∗(−ω,Ω) âω + F ∗(ω,Ω) â†ω

)
. (13.26)

The mean number of particles with momentum Ω that the accelerated observer registers in
the Minkowski vacuum |0〉 reads

〈0| b̂†Ωb̂Ω |0〉 =
∫ ∞

0

dω dω′ Ω√
ωω′

F ∗(−ω,Ω)F (−ω′,Ω) 〈0| âωâ†ω′ |0〉︸ ︷︷ ︸
δ(ω−ω′)

=

∫ ∞

0

dω
Ω

ω
|F (−ω,Ω)|2.

(13.27)
The last integral can be inferred even without an explicit formula for the function F . First, from
the commutation relations

[âω, â
†
ω′ ] = δ(ω − ω′) (otherwise 0) and [b̂Ω, b̂

†
Ω′ ] = δ(Ω− Ω′) (otherwise 0) (13.28)

follows

[b̂Ω, b̂
†
Ω] =

∫ ∞

0

dω dω′ Ω√
ωω′

(
F (ω,Ω)F ∗(ω′,Ω) [âω, â

†
ω′ ]︸ ︷︷ ︸

δ(ω−ω′)

+F (−ω,Ω)F ∗(−ω′,Ω) [â†ω, âω′ ]︸ ︷︷ ︸
−δ(ω−ω′)

)

=

∫ ∞

0

dω
Ω

ω

(
|F (ω,Ω)|2 − |F (−ω,Ω)|2

)
(13.29)

At the same time,
[b̂Ω, b̂

†
Ω] = δ(Ω− Ω) = δ(0) =

V

2π
, (13.30)



CHAPTER 13. CHANGE OF OBSERVER IN QUANTUM FIELD THEORY 155

where V is the (one dimensional) volume of space. Second, substituting ũ → ũ − iπa (or rather
moving the integration contour) in the integral definition of F , Eq. (13.24), we derive the relation

F (ω,Ω) =

∫ +∞

−∞

dũ

2π
exp

(
iΩũ+

Ωπ

a
− i

ω

a
e−aũ

)
= F (−ω,Ω) eπΩ/a. (13.31)

Comparing Eqs. (13.29) and (13.30), and making use of Eq. (13.31),

V

2π
=
(
e2πΩ/a − 1

) ∫ ∞

0

dω
Ω

ω
|F (−ω,Ω)|2. (13.32)

This can be used in Eq. (13.27) to finally find the mean density of particles in a mode with
momentum p = Ω (or p = −Ω for the left-moving particles),

n(Ω) =
1

V
〈0| b̂†Ωb̂Ω |0〉 = 1

2π

1

e2πΩ/a − 1
. (13.33)

This has a form of Bose-Einstein distribution (E = ~Ω):

n(E) ∝ 1

e2πE/a − 1
→ 2π

a
=

1

kBT
, where T

a
=

~
2πckB

. (13.34)

T is the Unruh temperature. An accelerated detector perceives a thermal bath with temperature
T .
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13.3 Exercises
Exercise 47. Angular momentum field operator. Consider a multicomponent (bosonic or
fermionic) field Φ = (φr), and show that the total angular momentum operator

M̂µν =

∫
d3x :M̂0µν : , where M0µν = −iπr(Sµν)rsφs − (T 0µxν − T 0νxµ), (13.35)

enjoys the commutation property

[Φ̂(x), M̂µν ] =
(
i(xµ∂ν − xν∂µ) + Sµν

)
Φ̂(x). (13.36)

Solution:

When calculating the commutator we may omit the normal ordering, since the operators
M̂0µν and : M̂0µν : differ only by a constant number. In the following we set y0 = x0 (M̂µν is
constant in time):

[φ̂r(x), M̂
µν ] =

∫
d3y

(
− i(Sµν)r′s

[
φ̂r(x), π̂r′(y)φ̂s(y)

]
−
[
φ̂r(x), T̂

0µ(y)yν − T̂ 0ν(y)yµ
])

= (Sµν)rsφ̂s(x)−
∫
d3y

([
φ̂r(x), T̂

0µ(y)
]
yν −

[
φ̂r(x), T̂

0ν(y)
]
yµ
)

(13.37)

Here we have used canonical commutation (bosonic) or anticommutation (fermionic) relations

[φ̂r(x, t), π̂s(y, t)] = i δrs δ(x−y) or {φ̂r(x, t), π̂s(y, t)} = i δrs δ(x−y) (and zero otherwise),
(13.38)

and Leibniz rules [AB,C] = A[B,C] + [A,C]B or [AB,C] = A{B,C} − {A,C}B, respectively.
Now recall that T 0µ = πr∂

µφr − g0µL , and hence

[φ̂r(x), T̂
0i(y)] = [φ̂r(x), π̂s(y)∂

iφ̂s(y)] = iδrsδ(x− y)∂iφ̂s(y) = iδ(x− y)∂iφ̂r(x). (13.39)

Moreover, since T 00 = H and H =
∫
d3yH (y), considering the Heisenberg equation

i∂0φ̂r(x) = [φ̂r(x), Ĥ] yields [φ̂r(x), T̂
00(y)] = [φ̂r(x), Ĥ (y)] = iδ(x− y)∂0φ̂r(x). (13.40)

Thus, we have
[φ̂r(x), T̂

0µ(y)] = iδ(x− y)∂µφ̂r(x), (13.41)

and may finally calculate

[φ̂r(x), M̂
µν ] = (Sµν)rsφ̂s(x)−

∫
d3y

(
yνiδ(x− y)∂µφ̂r(x)− yµiδ(x− y)∂ν φ̂r(x)

)
= (Sµν)rsφ̂s(x) + i(xµ∂ν − xν∂µ)φ̂r(x). (13.42)



Appendix A

Exam questions

1. Relativistic wave equations: Klein-Gordon equation, First-order equations (Dirac’s method)

2. Lorentz group and Lorentz algebra, Clifford algebra, Representations of gamma matrices

3. Dirac equation and its Lorentz covariance, Plane wave solutions, Dirac current and other
bilinears

4. Dirac particle in electromagnetic field, Non-relativistic limit of Dirac equation, Energy
levels of a Dirac particle in Coulomb potential

5. Discrete transformations of Dirac equation (Charge conjugation, Parity, Time reversal),
Helicity and chirality

6. Classical systems of coupled oscillators, Normal modes, Quantum systems of coupled os-
cillators, Vacuum state

7. Functional derivatives, Lagrangian and Hamiltonian formalism in classical field theory

8. Symmetries and conservation laws (Noether theorem) in field theory: Translations, Lorentz
transformations, Internal rotations

9. Field theory for quantum non-relativistic many-particle systems: Bosonic systems, Fermionic
systems, Interparticle interactions

10. Canonical quantisation of Klein-Gordon field, Mode expansion, Total four-momentum, Nor-
mal ordering

11. Multiplet of scalar fields, Charged Klein-Gordon field, States and particle interpretation

12. Canonical quantisation of Dirac field, Mode expansion, States and conserved quantities,
Spin-statistics connection

13. Pauli-Jordan commutation function, Feynman propagator for Klein-Gordon field, Retarded
(Forward) propagator

14. Inferring propagators from the action, Feynman propagator for Dirac field, Feynman prop-
agator for Schrödinger field

15. Classical electromagnetism, Covariant canonical quantization of electromagnetic field, Proca
field
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16. Interacting quantum fields, Interaction picture, Dyson operator, Scattering matrix

17. Wick theorem in generating form, Wick expansion of time-ordered products, Vacuum ex-
pectation values, Diagrammatic representation

18. Applications of quantum field theory in particle physics: Decay of an unstable particle,
Scattering cross section

19. Change of observer in quantum field theory: Poincaré transformations and Unruh effect



Appendix B

Selected formulas

B.1 Relativistic quantum mechanics
Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σiσj = δij + i εijkσ

k (B.1)

Baker-Campbell-Hausdorff formula (restricted):

eAeB = eA+Be
1
2 [A,B] provided [A, [A,B]] = [B, [A,B]] = 0 (B.2)

Campbell identity:

eA B e−A = B+ [A,B] +
1

2!
[A, [A,B]] + . . . =

∞∑
n=0

Kn
n!
, where K0 = B, Kn+1 = [A,Kn] (∀n)

(B.3)
Lorentz generators:

(Mµν)ρσ = i(gµρδνσ − gνρδµσ) , σµν =
i

2
[γµ, γν ] (B.4)

Finite Lorentz transformations:

L = exp

(
− i

2
ωµνM

µν

)
, S(L) = exp

(
− i

4
ωµνσ

µν

)
, S(L)−1γµS(L) = Lµνγ

ν (B.5)

Rotations and boosts:

Ji ≡
1

2
εijkM

jk, Ki ≡ M0i , ωij = εijkθ
k, ω0i = ζi : L = exp

(
−iθiJi − iζiKi

)
(B.6)

Rotations and boosts (spin representation):

S(L)D,W = exp

(
− i

2
θiΣi − i

2
ζiσ0i

D,W

)
, Σi = I⊗σi, σ0i

D = i

(
O σi

σi O

)
, σ0i

W = i

(
−σi O
O σi

)
(B.7)

Dirac and Weyl representation:

γ0D =

(
I O
O −I

)
= −γ5W , γiD =

(
O σi

−σi O

)
= γiW , γ5D =

(
O I
I O

)
= γ0W (B.8)
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Spin sums: ∑
s

u(p, s)ū(p, s) =
γµpµ +m

2m
,
∑
s

v(p, s)v̄(p, s) =
γµpµ −m

2m
(B.9)

Orthogonality of polarization spinors I:

ū(p, s)u(p, s′) = δss′ , v̄(p, s)v(p, s′) = −δss′ , ū(p, s)v(p, s′) = 0 (B.10)

Orthogonality of polarization spinors II:

u†(p, s)u(p, s′) =
ωp

m
δss′ , v†(p, s)v(p, s′) =

ωp

m
δss′ , u†(p, s)v(−p, s′) = 0 (B.11)

Discrete transformations:

ΨC(x) = γ2Ψ∗(x) , ΨP (x
0,−x) = γ0Ψ(x) , ΨT (−x0,x) = γ1γ3Ψ∗(x) (B.12)

B.2 Quantum field theory
Noether theorem:

x′
µ
= xµ + δxµ(x) , φ′r(x

′) = φr(x) + δφr(x) , f
µ =

∂L

∂(∂µφr)
δφr −

(
∂L

∂(∂µφr)
∂νφr − δµνL

)
δxν

(B.13)

Energy-momentum tensor:
Tµν =

∂L

∂(∂µφr)
∂νφr − δµνL (B.14)

Angular momentum tensor:

Mµνρ = −i ∂L

∂(∂µφr)
(Sνρ)rsφs − (Tµνxρ − Tµρxν) (B.15)

Schrödinger field:

L = i~ψ∗∂tψ − ~2

2m
(∂iψ

∗)(∂iψ)− V (x)ψ∗ψ (B.16)

Real Klein-Gordon field:

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 , φ̂(x) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x+â†p e
ip·x
)

(ωp ≡
√

p2 +m2)

(B.17)
Complex Klein-Gordon field:

L = (∂µϕ
∗)(∂µϕ)−m2ϕ∗ϕ , ϕ̂(x) =

∫
d3p√

(2π)32ωp

(
âp e

−ip·x + b̂†p e
ip·x
)

(B.18)

Dirac field:

L = Ψ̄(iγµ∂µ −m)Ψ , Ψ̂(x) =
∑
s=± 1

2

∫
d3p

(2π)3/2

√
m

ωp

(
b̂p,su(p, s)e

−ip·x + d̂ †
p,sv(p, s)e

ip·x
)

(B.19)
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— polarization spinors:

u(p, s) =
γµpµ +m√
2m(p0 +m)

u(0, s) , v(p, s) =
−γµpµ +m√
2m(p0 +m)

v(0, s),

u(0, s) =

(
1
0

)
⊗ χs , v(0, s) =

(
0
1

)
⊗ χs , χ 1

2
=

(
1
0

)
, χ− 1

2
=

(
0
1

)
(B.20)

Electromagnetic field:

Lξ = −1

4
FµνF

µν − 1

2ξ
(∂ρA

ρ)2

Âµ(x) =

3∑
λ=0

∫
d3k√

(2π)32ωk

(
âk,λ εµ(k, λ) e

−ik·x + â†k,λ εµ(k, λ) e
ik·x
)

(B.21)

— polarization vectors:

εµ(k, 0) = (1,0) , εµ(k, i) = (0, εi(k)), , ε3(k) =
k

|k|
, εi(k) · εj(k) = δij (B.22)

Feynman propagators:

Klein-Gordon : ∆F (x− y) =

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε

Dirac : SF (x− y) = (i/∂ +m)∆F (x− y)

Electromagnetic : (DF )µν(x− y) = −gµν ∆F (x− y)|m=0 (B.23)

Scattering matrix:

Sfi = 〈f | Û(+∞,−∞) |i〉 , Û(t, t0) = T exp

(
−i
∫ t

t0

dt′ ĤI
I (t

′)

)
, HI = −

∫
d3xLI

(B.24)
Wick theorem (for real one-component scalar field):

T exp
(
i

∫
d4xJ(x)φ̂(x)

)
= :exp

(
i

∫
d4xJ(x)φ̂(x)

)
: exp

(
− 1

2

∫
d4xd4yJ(x) i∆F (x− y) J(y)

)
(B.25)

Invariant matrix element:
Sfi = δfi + (2π)4δ(pf − pi) iMfi (B.26)

Particle states:

spin-0 : |p〉 =
√

(2π)32E â†p |0〉

spin-1
2
: |p, s〉 =

√
(2π)32E√

2m
b̂†p,s |0〉 (B.27)

Decay rate A→ 1 + 2 (rest frame, m1 = m2):

dΓ

dΩ
=
NAN1N2

64π2m2
A

√
m2
A − 4m2

1 |Mfi|2 , N =

{
1 for bosons
2m for fermions

(B.28)

Scattering cross section A+B → 1 + 2 (center-of-mass frame, mA = mB = m1 = m2):

dσ

dΩ
=
NANBN1N2

64π2s
|Mfi|2 , s = (pA + pB)

2 (B.29)
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