Jordan-Schwinger map in the theory of angular momentum

Václav Zatloukal*

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic

(Dated: February 21, 2020)

The Jordan-Schwinger representation of the su(2) algebra utilizes ladder operators to efficiently handle su(2) representations with arbitrary spin. In these notes we point out the usefulness of this technique for calculating the Clebsch-Gordan coefficients when two angular momenta are being composed.

I. JORDAN-SCHWINGER REPRESENTATION: GENERIC CASE

Let the $n \times n$ matrices $\mathbb{A}_1, \dots, \mathbb{A}_N$ form a representation (typically fundamental) of a Lie algebra \mathfrak{g} :

$$[\mathbb{A}_i, \mathbb{A}_j] = c_{ij}^k \mathbb{A}_k, \tag{1}$$

where c_{ij}^k are the structure constants of \mathfrak{g} , and summation over $k=1,\ldots,N$ is implied.

Consider n pairs of creation and annihilation operators $\hat{a}_1^{\dagger}, \dots, \hat{a}_n^{\dagger}$ and $\hat{a}_1, \dots, \hat{a}_n$ with usual bosonic commutation relations

$$[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta} \quad , \quad [\hat{a}_{\alpha}, \hat{a}_{\beta}] = 0 \quad , \quad [\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}] = 0.$$
 (2)

Then, the operators

$$\hat{A}_i = \hat{a}_{\alpha}^{\dagger}(\mathbb{A}_i)_{\alpha\beta}\hat{a}_{\beta},\tag{3}$$

where $(A_i)_{\alpha\beta}$ is the (α, β) -th entry of the matrix A_i , and summation over $\alpha, \beta = 1, \ldots, n$ is implied, form again a representation of the Lie algebra \mathfrak{g} . Indeed,

$$[\hat{A}_{i}, \hat{A}_{j}] = (\mathbb{A}_{i})_{\alpha\beta}(\mathbb{A}_{j})_{\gamma\delta} [\hat{a}_{\alpha}^{\dagger}\hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\hat{a}_{\delta}]$$

$$= (\mathbb{A}_{i})_{\alpha\beta}(\mathbb{A}_{j})_{\gamma\delta} (\hat{a}_{\alpha}^{\dagger}[\hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}]\hat{a}_{\delta} + \hat{a}_{\gamma}^{\dagger}[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\delta}]\hat{a}_{\beta})$$

$$= (\mathbb{A}_{i})_{\alpha\beta}(\mathbb{A}_{j})_{\beta\delta} \hat{a}_{\alpha}^{\dagger}\hat{a}_{\delta} - (\mathbb{A}_{i})_{\alpha\beta}(\mathbb{A}_{j})_{\gamma\alpha} \hat{a}_{\gamma}^{\dagger}\hat{a}_{\beta}$$

$$= (\mathbb{A}_{i}\mathbb{A}_{j} - \mathbb{A}_{j}\mathbb{A}_{i})_{\alpha\delta} \hat{a}_{\alpha}^{\dagger}\hat{a}_{\delta}$$

$$= c_{ij}^{k}(\mathbb{A}_{k})_{\alpha\beta}\hat{a}_{\alpha}^{\dagger}\hat{a}_{\beta}$$

$$= c_{ij}^{k}\hat{A}_{k}. \tag{4}$$

The map $\mathbb{A}_i \mapsto \hat{A}_i$ from matrices to operators (on an abstract Hilbert space) is referred to as the Jordan-Schwinger map [1].

^{*}Electronic address: zatlovac@gmail.com; URL: http://www.zatlovac.eu

JORDAN-SCHWINGER REPRESENTATION: su(2)

In particular, we will be concerned with the angular momentum Lie algebra $\mathfrak{su}(2)$, whose fundamental representation is spanned by the 2×2 matrices $\mathbb{J}_i = \frac{\sigma_i}{2}$, i = 1, 2, 3, which fulfil the commutation relations

$$[\mathbb{J}_i, \mathbb{J}_j] = i \,\varepsilon_{ijk} \,\mathbb{J}_k. \tag{5}$$

Here σ_i denote the standard Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (6)

For the case of $\mathfrak{su}(2)$, the Jordan-Schwinger map yields the following operators:

$$\hat{J}_{1} = \frac{1}{2} (\hat{a}_{2}^{\dagger} \hat{a}_{1} + \hat{a}_{1}^{\dagger} \hat{a}_{2}),
\hat{J}_{2} = \frac{i}{2} (\hat{a}_{2}^{\dagger} \hat{a}_{1} - \hat{a}_{1}^{\dagger} \hat{a}_{2}),
\hat{J}_{3} = \frac{1}{2} (\hat{a}_{1}^{\dagger} \hat{a}_{1} - \hat{a}_{2}^{\dagger} \hat{a}_{2}).$$
(7)

From now on we shall omit the 'hat', writing simply J_i instead of \hat{J}_i , and a_{α} instead of \hat{a}_{α} . The angular momentum ladder operators $J_{\pm} = J_1 \pm iJ_2$ assume a particularly simple form

$$J_{+} = a_{1}^{\dagger} a_{2} \quad , \quad J_{-} = a_{1} a_{2}^{\dagger}.$$
 (8)

The angular momentum squared, $\vec{J}^2 = J_1^2 + J_2^2 + J_3^2$, reads

$$\vec{J}^{2} = J_{3}^{2} + \frac{1}{2}(J_{+}J_{-} + J_{-}J_{+})
= \frac{1}{4}(a_{1}^{\dagger}a_{1} - a_{2}^{\dagger}a_{2})^{2} + \frac{1}{2}(a_{1}^{\dagger}a_{1} a_{2}a_{2}^{\dagger} + a_{2}^{\dagger}a_{2} a_{1}a_{1}^{\dagger})
= \frac{1}{4}(N_{1}^{2} - 2N_{1}N_{2} + N_{2}^{2}) + \frac{1}{2}(N_{1}N_{2} - N_{1} + N_{1}N_{2} - N_{2})
= \frac{N}{2}\left(\frac{N}{2} + 1\right),$$
(9)

where, in passing, we have denoted by N_1 , N_2 , and N the number operators

$$N_1 = a_1^{\dagger} a_1 \quad , \quad N_2 = a_2^{\dagger} a_2 \quad , \quad N = N_1 + N_2.$$
 (10)

(Note that now $J_3 = \frac{1}{2}(N_1 - N_2)$.) Normalized states with occupation numbers n_1 , n_2 (i.e., the simultaneous eigenstates of operators N_1, N_2) read

$$|n_1, n_2\rangle = \frac{(a_1^{\dagger})^{n_1}}{\sqrt{n_1!}} \frac{(a_2^{\dagger})^{n_2}}{\sqrt{n_2!}} |0\rangle,$$
 (11)

where $|0\rangle$ is the abstract vacuum state, and $n_1, n_2 = 0, 1, 2, \ldots$ These are also eigenstates $|j, m\rangle$ of J_3 and \vec{J}^2 :

$$J_3 |j, m\rangle = m |j, m\rangle$$
 , $\vec{J}^2 |j, m\rangle = j(j+1)$, $|j, m\rangle = |n_1 = j + m, n_2 = j - m\rangle$. (12)

Therefore, adding a 'quantum' with a_1^{\dagger} increases the spin j and the spin projection m by $\frac{1}{2}$, whereas adding a 'quantum' with a_2^{\dagger} increases j by $\frac{1}{2}$, but decreases m by $\frac{1}{2}$ (see Fig.). Note that the operators J_i of Eq. (7) preserve the total occupation number $n_1 + n_2$, and hence

Note that the operators J_i of Eq. (7) preserve the total occupation number $n_1 + n_2$, and hence also the value of spin j. The Fock space generated by a_1^{\dagger} , a_2^{\dagger} then decomposes into subspaces, labelled by $j = \frac{1}{2}(n_1 + n_2) = 0, \frac{1}{2}, 1, \ldots$, which are invariant under the J_i (and, of course, under the derived operators J_{\pm} and J^2). Moreover, within the spin-j subspace, $m = -j, -j - 1, \ldots, j$, as follows from the inequalities $j + m = n_1 \geq 0$ and $j - m = n_2 \geq 0$.

Let us remark that one can realize the abstract Fock space as a space of functions in two complex variables $f(z_1, z_2)$, and the abstract creation and annihilation operators as multiplicative and differential operators

$$a_1^{\dagger} \simeq z_1 \quad , \quad a_2^{\dagger} \simeq z_2 \quad , \quad a_1 \simeq \frac{\partial}{\partial z_1} \quad , \quad a_2 \simeq \frac{\partial}{\partial z_2}.$$
 (13)

The vacuum state $|0\rangle$ is identified with 1, and the scalar product can be defined via a two-fold integral over the complex plane

$$\langle f|g\rangle = \frac{1}{\pi^2} \int_{\mathbb{C}^2} f^*(z_1, z_2) g(z_1, z_2) e^{-|z_1|^2 - |z_2|^2} dz_1 dz_1^* dz_2 dz_2^*. \tag{14}$$

The states $|j,m\rangle$ are then realized by the polynomials

$$|j,m\rangle \simeq \frac{z_1^{j+m}}{\sqrt{(j+m)!}} \frac{z_2^{j-m}}{\sqrt{(j-m)!}}.$$
 (15)

A. Spin coherent states

Let us define a spin coherent state by the formula

$$|j,\mu\rangle = e^{\mu J_{-}} |j,m=j\rangle \quad , \quad \mu \in \mathbb{C}.$$
 (16)

$$|j,\mu\rangle = e^{\mu a_{2}^{\dagger} a_{1}} \frac{(a_{1}^{\dagger})^{2j}}{\sqrt{(2j)!}} |0\rangle$$

$$= e^{\mu a_{2}^{\dagger} a_{1}} \frac{(a_{1}^{\dagger})^{2j}}{\sqrt{(2j)!}} e^{-\mu a_{2}^{\dagger} a_{1}} |0\rangle$$

$$= \frac{1}{\sqrt{(2j)!}} (e^{\mu a_{2}^{\dagger} a_{1}} a_{1}^{\dagger} e^{-\mu a_{2}^{\dagger} a_{1}})^{2j} |0\rangle$$

$$= \frac{(a_{1}^{\dagger} + \mu a_{2}^{\dagger})^{2j}}{\sqrt{(2j)!}} |0\rangle.$$
(17)

To prove the last equality, observe that

$$\frac{d}{d\mu}(e^{\mu a_2^{\dagger} a_1} a_1^{\dagger} e^{-\mu a_2^{\dagger} a_1}) = a_2^{\dagger} e^{\mu a_2^{\dagger} a_1} [a_1, a_1^{\dagger}] e^{-\mu a_2^{\dagger} a_1} = a_2^{\dagger}. \tag{18}$$

In passing we note that Eq. (17) implies

$$\frac{(J_{-})^{\ell}}{\ell!}|j,j\rangle = \frac{1}{\sqrt{(2j)!}} {2j \choose \ell} (a_1^{\dagger})^{2j-\ell} (a_2^{\dagger})^{\ell} |0\rangle = {2j \choose \ell}^{1/2} |j,j-\ell\rangle. \tag{19}$$

III. COMPOSITION OF TWO ANGULAR MOMENTA

The Jordan-Schwinger representation for a system of two independent angular momenta (labelled a and b) utilizes four pairs of creation and annihilation operators, and identifies

$$J_i^a = \frac{1}{2} (\sigma_i)_{\alpha\beta} a_{\alpha}^{\dagger} a_{\beta} \quad , \quad J_i^b = \frac{1}{2} (\sigma_i)_{\alpha\beta} b_{\alpha}^{\dagger} b_{\beta} \quad , \quad J_i^{tot} = J_i^a + J_i^b.$$
 (20)

(Explicit expressions are analogous to those of Eq. (7).) Since $[J_i^a, J_j^b] = 0$ for all i, j = 1, 2, 3, the composed angular momentum operators J_i^{tot} satisfy the $\mathfrak{su}(2)$ commutation relations, Eq. (5).

Our task is now to build out of the tensor product states $|j_a, m_a\rangle |j_b, m_b\rangle = |j_a, m_a\rangle \otimes |j_b, m_b\rangle$ (i.e., eigenstates of the operators $(\vec{J}^a)^2, J_3^a, (\vec{J}^b)^2, J_3^b$) linear combinations that are eigenstates of operators $(\vec{J}^a)^2, (\vec{J}^b)^2, (\vec{J}^{tot})^2, J_3^{tot}$. We shall denote the latter states by $|j_a, j_b, j_{tot}, m_{tot}\rangle$, and look for their expansion in terms of $|j_a, m_a\rangle |j_b, m_b\rangle$. The coefficients in this expansion are the Clebsch-Gordan coefficients.

First, we realize that

$$|j_a, j_b, j_a + j_b, j_a + j_b\rangle = |j_a, j_a\rangle |j_b, j_b\rangle = \frac{(a_1^{\dagger})^{2j_a}}{\sqrt{(2j_a)!}} \frac{(b_1^{\dagger})^{2j_b}}{\sqrt{(2j_b)!}} |0\rangle$$
 (21)

are common eigenstates for both sets of operators. From these we will generate all the other eigenstates $|j_a, j_b, j_{tot}, m_{tot}\rangle$ using the ladder operator J_{-}^{tot} , which lowers the eigenvalue m_{tot} , and the operator [2]

$$S^{\dagger} = a_2^{\dagger} b_1^{\dagger} - a_1^{\dagger} b_2^{\dagger}, \tag{22}$$

which fulfils the following commutation relations:

$$[N^{a,b}, S^{\dagger}] = N^{a,b} \quad , \quad [J_3^{tot}, S^{\dagger}] = 0 \quad , \quad [J_+^{tot}, S^{\dagger}] = 0.$$
 (23)

Moreover, by the last two relations, and the first line in Eq. (9),

$$[(\vec{J}^{tot})^2, S^{\dagger}] = 0. \tag{24}$$

That is, the operator S^{\dagger} raises (simultaneously) the eigenvalues j_a and j_b by $\frac{1}{2}$, while preserving j_{tot} and m_{tot} :

$$S^{\dagger} | j_a, j_b, j_{tot}, m_{tot} \rangle = \alpha \left| j_a + \frac{1}{2}, j_b + \frac{1}{2}, j_{tot}, m_{tot} \right\rangle.$$
 (25)

To determine the factors α , we realize that the operator SS^{\dagger} can be cast as

$$SS^{\dagger} = \left(\frac{N^a + N^b}{2} + 1\right) \left(\frac{N^a + N^b}{2} + 2\right) - (\vec{J}^{tot})^2.$$
 (26)

Hence, choosing α real and positive, we find

$$\alpha(j_a, j_b, j_{tot}) = \sqrt{(j_a + j_b + 1)(j_a + j_b + 2) - j_{tot}(j_{tot} + 1)}$$

$$= \sqrt{(j_a + j_b + 1 - j_{tot})(j_a + j_b + 2 + j_{tot})},$$
(27)

and after repeated application of S^{\dagger} we obtain

$$\frac{(S^{\dagger})^k}{k!} |j_a, j_b, j_a + j_b, m_{tot}\rangle = \binom{2(j_a + j_b) + k + 1}{k}^{1/2} |j_a + \frac{k}{2}, j_b + \frac{k}{2}, j_a + j_b, m_{tot}\rangle. \tag{28}$$

Now, Eqs. (28) and (19) give (writing for the moment j'_a, j'_b instead of j_a, j_b)

$$\frac{(J_{-}^{tot})^{\ell}}{\ell!} \frac{(S^{\dagger})^{k}}{k!} |j'_{a}, j'_{b}, j'_{a} + j'_{b}, j'_{a} + j'_{b}\rangle =
= \binom{2(j'_{a} + j'_{b}) + k + 1}{k} \binom{1/2}{\ell} \binom{2(j'_{a} + j'_{b})}{\ell}^{1/2} |j'_{a} + \frac{k}{2}, j'_{b} + \frac{k}{2}, j'_{a} + j'_{b}, j'_{a} + j'_{b} - \ell\rangle.$$
(29)

At the same time, the left-hand side is equal to

$$\frac{(S^{\dagger})^{k}}{k!} \frac{1}{\ell!} \frac{d^{\ell}}{d\mu^{\ell}} \bigg|_{\mu=0} e^{\mu(J_{-}^{a}+J_{-}^{b})} |j'_{a},j'_{a}\rangle |j'_{b},j'_{b}\rangle =
= \frac{(a_{2}^{\dagger}b_{1}^{\dagger} - a_{1}^{\dagger}b_{2}^{\dagger})^{k}}{k! \ell!} \frac{d^{\ell}}{d\mu^{\ell}} \bigg|_{\mu=0} \frac{(a_{1}^{\dagger} + \mu a_{2}^{\dagger})^{2j'_{a}}}{\sqrt{(2j'_{a})!}} \frac{(b_{1}^{\dagger} + \mu b_{2}^{\dagger})^{2j'_{b}}}{\sqrt{(2j'_{b})!}} |0\rangle,$$
(30)

where we have made use of Eq. (17).

In order to find the expansion of a state $|j_a, j_b, j_{tot}, m_{tot}\rangle$ in terms of $|j_a, m_a\rangle |j_b, m_b\rangle$ we set

$$k = j_a + j_b - j_{tot}$$
 , $\ell = j_{tot} - m_{tot}$, $j'_a = \frac{j_a - j_b + j_{tot}}{2}$, $j'_b = \frac{-j_a + j_b + j_{tot}}{2}$, (31)

and equate the right-hand sides of Eqs. (29) and (30):

$$\begin{pmatrix}
j_{a} + j_{b} + j_{tot} + 1 \\
j_{a} + j_{b} - j_{tot}
\end{pmatrix}^{1/2} \begin{pmatrix}
2j_{tot} \\
j_{tot} - m_{tot}
\end{pmatrix}^{1/2} |j_{a}, j_{b}, j_{tot}, m_{tot}\rangle =
= \frac{(a_{2}^{\dagger}b_{1}^{\dagger} - a_{1}^{\dagger}b_{2}^{\dagger})^{j_{a} + j_{b} - j_{tot}}}{(j_{a} + j_{b} - j_{tot})!(j_{tot} - m_{tot})!} \frac{d^{j_{tot} - m_{tot}}}{d\mu^{j_{tot} - m_{tot}}} \Big|_{\mu=0} \frac{(a_{1}^{\dagger} + \mu a_{2}^{\dagger})^{j_{a} - j_{b} + j_{tot}}}{\sqrt{(j_{a} - j_{b} + j_{tot})!}} \frac{(b_{1}^{\dagger} + \mu b_{2}^{\dagger})^{-j_{a} + j_{b} + j_{tot}}}{\sqrt{(-j_{a} + j_{b} + j_{tot})!}} |0\rangle.$$
(32)

The right-hand side is a sum of terms of the form

$$\frac{(a_1^{\dagger})^{n_1^a}}{\sqrt{n_1^a!}} \frac{(a_2^{\dagger})^{n_2^a}}{\sqrt{n_2^a!}} \frac{(b_1^{\dagger})^{n_1^b}}{\sqrt{n_2^b!}} \frac{(b_2^{\dagger})^{n_2^b}}{\sqrt{n_2^b!}} |0\rangle = \left| j_a = \frac{1}{2} (n_1^a + n_2^a), m_a = \frac{1}{2} (n_1^a - n_2^a) \right\rangle. \tag{33}$$

A general explicit expression is relatively complicated so we merely illustrate the calculations with a simple example.

A. Example:
$$j_a = j_b = \frac{1}{2}$$

In the case $j_a = j_b = \frac{1}{2}$ and $j_{tot} = 0$, $m_{tot} = 0$, and Eq. (32) gives:

$$\sqrt{2} \left| \frac{1}{2}, \frac{1}{2}, 0, 0 \right\rangle = \left(a_2^{\dagger} b_1^{\dagger} - a_1^{\dagger} b_2^{\dagger} \right) \left| 0 \right\rangle = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle - \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle. \tag{34}$$

In the case $j_a = j_b = \frac{1}{2}$, $j_{tot} = 1$, Eq. (32) simplifies as follows:

$$\binom{2}{1 - m_{tot}}^{1/2} \left| \frac{1}{2}, \frac{1}{2}, 1, m_{tot} \right\rangle = \frac{1}{(1 - m_{tot})!} \left| \frac{d^{1 - m_{tot}}}{d\mu^{1 - m_{tot}}} \right|_{\mu = 0} (a_1^{\dagger} + \mu a_2^{\dagger}) (b_1^{\dagger} + \mu b_2^{\dagger}) \left| 0 \right\rangle.$$
 (35)

This yields for $m_{tot} = -1, 0, 1$

$$\begin{aligned} \left| \frac{1}{2}, \frac{1}{2}, 1, -1 \right\rangle &= a_2^{\dagger} b_2^{\dagger} \left| 0 \right\rangle = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle, \\ \sqrt{2} \left| \frac{1}{2}, \frac{1}{2}, 1, 0 \right\rangle &= \left(a_2^{\dagger} b_1^{\dagger} + a_1^{\dagger} b_2^{\dagger} \right) \left| 0 \right\rangle = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle + \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, -\frac{1}{2} \right\rangle, \\ \left| \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle &= a_1^{\dagger} b_1^{\dagger} \left| 0 \right\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle. \end{aligned} (36)$$

APPENDIX A: REPRESENTATIONS ON VECTORS AND ON OPERATORS

For operators defined in Eq. (3) we now show that, for any N-tuple of parameters $\theta_i \in \mathbb{C}$,

$$\hat{a}_{\alpha}^{\dagger} (e^{\theta_i \mathbb{A}_i})_{\alpha\beta} = e^{\theta_j \hat{A}_j} \hat{a}_{\beta}^{\dagger} e^{-\theta_k \hat{A}_k}, \tag{A1}$$

which can be further multiplied by a vector (v_{β}) from the representation space to find a double-sided action on the corresponding operator $v_{\beta}\hat{a}_{\beta}$ (the right-hand side).

To this end, define operator-valued functions

$$\hat{\mathcal{O}}_{\beta}(\tau) = e^{\tau\theta_j \hat{A}_j} \,\hat{a}_{\beta}^{\dagger} \, e^{-\tau\theta_k \hat{A}_k},\tag{A2}$$

and calculate, with a help of $[\hat{A}_i, \hat{a}_{\beta}^{\dagger}] = \hat{a}_{\alpha}^{\dagger}(\mathbb{A}_i)_{\alpha\beta}$,

$$\frac{d}{d\tau}\hat{\mathcal{O}}_{\beta}(\tau) = e^{\tau\theta_{j}\hat{A}_{j}} \left[\theta_{i}\hat{A}_{i}, \hat{a}_{\beta}^{\dagger}\right] e^{-\tau\theta_{k}\hat{A}_{k}}$$

$$= \theta_{i} e^{\tau\theta_{j}\hat{A}_{j}} \hat{a}_{\alpha}^{\dagger}(\mathbb{A}_{i})_{\alpha\beta} e^{-\tau\theta_{k}\hat{A}_{k}}$$

$$= \hat{\mathcal{O}}_{\alpha}(\tau)(\theta_{i}\mathbb{A}_{i})_{\alpha\beta}.$$
(A3)

Integration of this differential equation, observing the initial condition $\hat{\mathcal{O}}_{\beta}(0) = \hat{a}_{\beta}^{\dagger}$, yields

$$\hat{\mathcal{O}}_{\beta}(\tau) = \hat{a}_{\alpha}^{\dagger} (e^{\tau \theta_{i} \mathbb{A}_{i}})_{\alpha \beta},\tag{A4}$$

therefore proving relation (A1) upon setting $\tau = 1$.

APPENDIX B: FERMIONIC OPERATORS

Instead of the bosonic operators a_i, a_i^{\dagger} , let us consider n pairs of fermionic operators f_1, \ldots, f_n and $f_1^{\dagger}, \ldots, f_n^{\dagger}$ with (canonical) anticommutation relations

$$\{\hat{f}_{\alpha}, \hat{f}_{\beta}^{\dagger}\} = \delta_{\alpha\beta} \quad , \quad \{\hat{f}_{\alpha}, \hat{f}_{\beta}\} = 0 \quad , \quad \{\hat{f}_{\alpha}^{\dagger}, \hat{f}_{\beta}^{\dagger}\} = 0,$$
 (B1)

and define, for we every A_i , an operator

$$\hat{F}_i = \hat{f}_{\alpha}^{\dagger}(\mathbb{A}_i)_{\alpha\beta}\hat{f}_{\beta}. \tag{B2}$$

Due to the identity

$$[AB, CD] = A\{B, C\}D - AC\{B, D\} + \{A, C\}DB - C\{A, D\}B,$$
(B3)

which holds for arbitrary operators A, B, C, D, the operators \hat{F}_i form again a representation of the Lie algebra \mathfrak{g} :

$$[\hat{F}_i, \hat{F}_j] = c_{ij}^k \hat{F}_k. \tag{B4}$$

Moreover, since

$$[AB, C] = A\{B, C\} - \{A, C\}B, \tag{B5}$$

we have an analogue of Eq. (A1), namely,

$$\hat{f}_{\alpha}^{\dagger} (e^{\theta_i \mathbb{A}_i})_{\alpha\beta} = e^{\theta_j \hat{F}_j} \hat{f}_{\beta}^{\dagger} e^{-\theta_k \hat{F}_k}. \tag{B6}$$

J. Schwinger, On Angular Momentum, Unpublished Report, Number NYO-3071 (1952).
 J. Bellissard and R. Holtz, Composition of coherent spin states, J Math Phys 15, 1275 (1974).