Field-theoretical description of many-body random walks on graphs

Václav Zatloukal

FNSPE, Czech Technical University in Prague

[www.zatlovac.eu]

SEMF's Interdisciplinary School

July 2023, Valencia

Linear evolution of the probability distribution (linear algebra)

Multi-particle random walk on a graph

Independent evolution \oplus interparticle interactions

Non-linear behaviour (particle influenced by configuration of the others)

- One-particle walk
- Many walkers (Reaction networks)
- Master equation and Rate equation
- Quantum (Fock-space) techniques
- The Hamiltonian and evolution of operators

Main reference: [Baez2012] (see last slide with bibliography)

- Graph (oriented, weighted) with vertex set $V = \{1, 2, 3\}$
- Probability distribution $\vec{p} = (p_1, p_2, p_3)$

• Weights \rightarrow Transition rate matrix H = $\begin{pmatrix} -4 & 0 & 3 \\ 4 & -2 & 1 \\ 0 & 2 & -4 \end{pmatrix}$

H is infinitesimal stochastic: $H_{ij} \ge 0$ $(i \ne j)$ and $\sum_{i \in V} H_{ij} = 0$ $(\forall j)$ (\Rightarrow conservation of probability)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j
eq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j \neq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j
eq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j
eq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j \neq i}} (H_{ij}
ho_j - H_{ji}
ho_i)$$
(1)

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j \neq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

• Evolution equation (continuous time):

$$rac{d}{dt}ec{p} = \mathsf{H}ec{p}, \quad ext{that is} \quad rac{d}{dt}
ho_i = \sum_{\substack{j \ j
eq i}} (H_{ij}
ho_j - H_{ji}
ho_i) \tag{1}$$

(c.f. Schrödinger equation $i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$)

Many walkers

- From particle description ("where are individual particles located") to field description ("how many particles occupy individual places")
- Indistinguishable particles \rightarrow definite (micro)state characterized by occupation numbers $\vec{n} = (n_1, \dots, n_k) \in \mathbb{N}_0^k$
- Statistical (macro)state: $(\psi_{\vec{n}})_{\vec{n} \in \mathbb{N}_0^k}$ (list of microstate probabilities)

 $n_3 = 3$

アング

Population dynamics:
 vertices ↔ animal species
 evolution ↔ birth, death, predation

Chemical reaction networks:
 vertices ↔ substances
 evolution ↔ chemical reactions

• Complex: occupation vector $(\in \mathbb{N}_0^k)$ with (typically) small entries

• Elementary transition τ : change of one complex into another

 $\vec{s}(\tau)$... source complex $\vec{t}(\tau)$... target complex

 $r(\tau)$... rate constant

Example: chemical reaction $2\mathrm{H}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{H}_2\mathrm{O}$

Master equation

Evolution of statistical state:

$$\frac{d}{dt}\psi_{\vec{n}'} = \sum_{\vec{n}} H_{\vec{n}'\vec{n}}\psi_{\vec{n}}$$
(2)

where many-body transition rate matrix

$$H_{\vec{n}'\vec{n}} = \sum_{\tau} \underline{r(\tau)\vec{n}^{\vec{s}(\tau)}} \underbrace{\left(\delta_{\vec{n}',\vec{n}+\vec{t}(\tau)-\vec{s}(\tau)} - \delta_{\vec{n}',\vec{n}}\right)}_{\uparrow} \qquad (3)$$

trans. rate for occup. \vec{n} \vec{n} becoming \vec{n}' via τ \vec{n}' transitioning away

Notation:

- Vector exponent $\vec{n}^{\vec{s}} \equiv n_1^{s_1} \cdots n_k^{s_k}$
- Falling power $n^{\underline{s}} \equiv n(n-1)\cdots(n-s+1)$
- Kronecker delta $\delta_{\vec{n}',\vec{n}} = 1$ if $\vec{n}' = \vec{n}$ (otherwise $\delta_{\vec{n}',\vec{n}} = 0$)

Remark: Matrix H is infinitesimal stochastic, $\sum_{\vec{n}'} H_{\vec{n}'\vec{n}} = 0$ ($\forall \vec{n}$)

Evolution of average occupations $\vec{x} = (x_1, \dots, x_k)$ $(x_i = \sum_{\vec{n}} n_i \psi_{\vec{n}})$:

$$\frac{d}{dt}\vec{x} = \sum_{\tau} r(\tau) (\vec{t}(\tau) - \vec{s}(\tau)) \vec{x}^{\vec{s}(\tau)}$$
(4)

Non-linear system of equations (dynamical system)

Good approximation (reduction) of the master equation for large occupation numbers [Baez2013]

<日

<</p>

Example: Lotka-Volterra predator-prey model

Elementary transitions: $\tau \in \{p, b, d\}$

- predation: $\vec{s}(p) = (1,1) \xrightarrow{r_p} (2,0) = \vec{t}(p)$
- **b**irth: $\vec{s}(b) = (0,1) \xrightarrow{r_b} (0,2) = \vec{t}(b)$

• death:

Rate equations: $(x_1 \dots \text{ predator population}, x_2 \dots \text{ prey population})$

$$\frac{dx_1}{dt} = r_p x_1 x_2 - r_d x_1 \quad , \quad \frac{dx_2}{dt} = -r_p x_1 x_2 + r_b x_2 \tag{5}$$

 \bigcirc

Statistical state - power series representation

 \rightarrow For each vertex $i = 1, \dots, k$ introduce auxiliary variable z_i

 \rightarrow Represent statistical state $(\psi_{\vec{n}})_{\vec{n} \in \mathbb{N}_0^k}$ by power series (probability generating function)

$$\Psi(z_1,...,z_k) = \sum_{\vec{n}} \psi_{\vec{n}} \, z_1^{n_1} \cdots z_k^{n_k} \quad , \quad \Psi(\vec{1}) \equiv \Psi(1,...,1) = 1 \qquad (6)$$

Stochastic Fock space: all real (formal) power series in z_1, \ldots, z_k

Examples

• Product state: two independent particles A and B with location distributions \vec{p}^A and \vec{p}^B

$$\Psi(\vec{z}) = (\vec{p}^{\mathcal{A}} \cdot \vec{z})(\vec{p}^{\mathcal{B}} \cdot \vec{z}) = \sum_{i,j} \frac{1}{2} (\underbrace{p_i^{\mathcal{A}} p_j^{\mathcal{B}} + p_i^{\mathcal{B}} p_j^{\mathcal{A}}}_{\mathcal{F}}) z_i z_j$$
(7)

symmetry \rightarrow indistinguishability

• Coherent state (single vertex, resp. many vertices):

$$\Psi(z) = e^{x(z-1)} = \sum_{n=0}^{\infty} \underbrace{e^{-x} \frac{x^n}{n!}}_{n!} z^n \quad , \quad \Psi(\vec{z}) = e^{\vec{x} \cdot (\vec{z} - \vec{1})}$$
(8)

Poisson distribution with mean x

Creation and annihilation operators

Inspired by quantum field theory (second quantization [Kleinert2016, Ch. 2]), \rightarrow introduce for each vertex creation operator a_i^{\dagger} :

$$a_i^{\dagger}\Psi = z_i\Psi \quad , \quad a_i^{\dagger}\vec{z}^{\vec{n}} = z_1^{n_1}\cdots z_i^{n_i+1}\cdots z_k^{n_k} \tag{9}$$

and **annihilation operator** a_i:

$$a_i \Psi = \frac{\partial}{\partial z_i} \Psi \quad , \quad a_i \vec{z}^{\,\vec{n}} = n_i \, z_1^{n_1} \cdots z_i^{n_i - 1} \cdots z_k^{n_k} \tag{10}$$

- a_i^{\dagger} adds (for every microstate) one particle onto vertex *i*
- a_i removes one particle from vertex i (n_i particles to choose from)
- Commutation relations: $[A, B] \equiv AB BA$

$$[a_i, a_j^{\dagger}] = \delta_{ij}$$
 , $[a_i, a_j] = 0$, $[a_i^{\dagger}, a_j^{\dagger}] = 0$ (11)

See [Doi1976] [Grassberger1980] [Baez2012] [Baez2013]

Hamiltonian operator

Turn the many-body transition rate matrix

$$H_{\vec{n}'\vec{n}} = \sum_{\tau} r(\tau) \vec{n}^{\vec{\underline{s}}(\tau)} (\delta_{\vec{n}',\vec{n}+\vec{t}(\tau)-\vec{s}(\tau)} - \delta_{\vec{n}',\vec{n}})$$
(12)

into the Hamiltonian operator

$$\hat{H} = \sum_{\tau} r(\tau) \left(\vec{a}^{\dagger^{\vec{t}(\tau)}} - \vec{a}^{\dagger^{\vec{s}(\tau)}} \right) \vec{a}^{\vec{s}(\tau)}$$
(13)

 \rightarrow Then master equation turns into evolution equation for generating series $\Psi(\vec{z}, t)$ [Baez2013]:

$$\frac{d}{dt}\psi_{\vec{n}'} = \sum_{\vec{n}} H_{\vec{n}'\vec{n}}\psi_{\vec{n}} \quad \rightarrow \quad \frac{\partial}{\partial t}\Psi = \hat{H}\Psi$$
(14)

Follows from: $(a^{s}z^{n} = n^{\underline{s}}z^{n-s})$

$$\sum_{\vec{n}'} H_{\vec{n}'\vec{n}} \vec{z}^{\vec{n}'} = \sum_{\tau} r(\tau) \vec{n}^{\vec{\underline{s}}(\tau)} (\vec{z}^{\vec{n}+\vec{t}(\tau)-\vec{s}(\tau)} - \vec{z}^{\vec{n}}) = \hat{H} \vec{z}^{\vec{n}}$$
(15)

Examples of Hamiltonian operators

• Non-interacting walkers:

$$\vec{s}(i,j) = (0,..., \overset{j}{1},..., 0) \xrightarrow{r_{ij}} (0,..., \overset{i}{1},..., 0) = \vec{t}(i,j)$$
$$\hat{H} = \sum_{i,j=1}^{k} r_{ij} (a_i^{\dagger} - a_j^{\dagger}) a_j$$
(16)

• Lotka-Volterra model:

$$a_1^{\dagger}, a_1 \dots$$
 predator operators; $a_2^{\dagger}, a_2 \dots$ prey operators
 $\hat{H} = r_p (a_1^{\dagger^2} - a_1^{\dagger} a_2^{\dagger}) a_1 a_2 + r_b (a_2^{\dagger^2} - a_2^{\dagger}) a_2 + r_d (1 - a_1^{\dagger}) a_1$ (17)

• Branching process (on one vertex): $\vec{s}(m) = (1) \xrightarrow{r_m} (m) = \vec{t}(m)$ $\hat{H} = r_0(1 - a^{\dagger})a + \sum_{m=2}^{\infty} r_m(a^{\dagger m} - a^{\dagger})a$ (18)

Evolution operator

• The Hamiltonian \hat{H} defines time evolution operator U(t) via:

$$\frac{dU}{dt} = \hat{H}U \quad , \quad U(0) = 1 \tag{19}$$

Assuming, for simplicity, that rate constants $r(\tau)$ (and therefore \hat{H}) are time-independent: $U(t) = e^{t\hat{H}}$

• State evolution can be cast, using $\Psi(\vec{z}) = \Psi(\vec{a}^{\dagger}) \mathbf{1}$, and $\hat{H} \mathbf{1} = 0$, as

$$\Psi(\vec{z},t) = U(t)\Psi(\vec{z},0) = \Psi(\underbrace{e^{t\hat{H}}\vec{a}^{\dagger}e^{-t\hat{H}}}_{\vec{A}^{\dagger}(t)},0) 1$$
(20)

Here $\vec{A}^{\dagger}(t)$ satisfies $(\forall i)$

$$\frac{dA_{i}^{\dagger}}{dt} = [\hat{H}, A_{i}^{\dagger}] = U(t) [\hat{H}, a_{i}^{\dagger}] U^{-1}(t) \quad , \quad A_{i}^{\dagger}(0) = a_{i}^{\dagger}$$
(21)

Example: Branching process

Hamiltonian

$$\hat{H} = r_0(1-a^{\dagger})a + \sum_{m=2}^{\infty} r_m(a^{\dagger m} - a^{\dagger})a$$
 (22)

yields equation for $A^{\dagger}(t)$ (recall: $[a, a^{\dagger}] = 1$)

$$\frac{dA^{\dagger}}{dt} = r_0(1-A^{\dagger}) + \sum_{m=2}^{\infty} r_m(A^{\dagger m} - A^{\dagger}) \quad , \quad A^{\dagger}(0) = a^{\dagger} \qquad (23)$$

- E > - E >

Example: Branching process

Hamiltonian

$$\hat{H} = r_0(1-a^{\dagger})a + \sum_{m=2}^{\infty} r_m(a^{\dagger m} - a^{\dagger})a$$
 (22)

yields equation for $A^{\dagger}(t)$ (recall: $[a, a^{\dagger}] = 1$)

$$\frac{dA^{\dagger}}{dt} = r_0(1-A^{\dagger}) + \sum_{m=2}^{\infty} r_m(A^{\dagger m} - A^{\dagger}) \quad , \quad A^{\dagger}(0) = a^{\dagger} \qquad (23)$$

 \rightarrow Assuming $r_m=0$ for $m\geq 2$ (particles only vanish at rate $r_0)$

$$A^{\dagger}(t) = 1 - e^{-r_0 t} + e^{-r_0 t} a^{\dagger}$$
(24)

 \rightarrow Evolved state reads

$$\Psi(z,t) = \Psi(1 - e^{-r_0 t} + e^{-r_0 t} z, 0) = \sum_n \psi_n(0)(1 - e^{-r_0 t} + e^{-r_0 t} z)^n$$
(25)

Time evolution transformed z to $1 - e^{-r_0 t} + e^{-r_0 t} z_{2} + e^{-r_0 t} z_{2}$

Example: Non-interacting walkers

£.

Hamiltonian

$$\hat{H} = \sum_{i,j=1}^{k} r_{ij} (a_i^{\dagger} - a_j^{\dagger}) a_j$$
(26)

 $\psi_i(t)$

yields

$$\frac{dA_j^{\dagger}}{dt} = \sum_i r_{ij} (A_i^{\dagger} - A_j^{\dagger}) = \sum_i A_i^{\dagger} H_{ij} \quad , \quad A^{\dagger}(0) = a^{\dagger}, \qquad (27)$$

where we denoted $H_{ij} = r_{ij}$ (for $i \neq j$) and $H_{jj} = -\sum_i r_{ij}$ elements of a 'rate matrix' H.

 \rightarrow We find

$$A_{j}^{\dagger}(t) = \sum_{i} a_{i}^{\dagger}(e^{tH})_{ij} \quad \rightarrow \quad \Psi(\vec{z},t) = \Psi(e^{tH^{\intercal}}\vec{z},0)$$
(28)

For one particle: $((0, \ldots, \underbrace{1}_{i}, \ldots, 0) \rightarrow i)$

$$\Psi(\vec{z},t) = \sum_{j} \psi_{j}(0) \sum_{i} z_{i}(e^{tH})_{ij} = \sum_{i} \sum_{j} (e^{tH})_{ij} \psi_{j}(0) z_{i}$$
(29)

Example: Lotka-Volterra model

Hamiltonian

$$\hat{H} = r_{\rho}(a_1^{\dagger 2} - a_1^{\dagger}a_2^{\dagger})a_1a_2 + r_b(a_2^{\dagger 2} - a_2^{\dagger})a_2 + r_d(1 - a_1^{\dagger})a_1 \qquad (30)$$

yields

$$\frac{dA_{1}^{\dagger}}{dt} = r_{\rho}(A_{1}^{\dagger^{2}} - A_{1}^{\dagger}A_{2}^{\dagger})A_{2} + r_{d}(1 - A_{1}^{\dagger})$$
(31)
$$\frac{dA_{2}^{\dagger}}{dt} = r_{\rho}(A_{1}^{\dagger^{2}} - A_{1}^{\dagger}A_{2}^{\dagger})A_{1} + r_{b}(A_{2}^{\dagger^{2}} - A_{2}^{\dagger})$$
(32)
where $\vec{A}(t) = e^{t\hat{H}}\vec{a}\,e^{-t\hat{H}}$

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

Example: Lotka-Volterra model

Hamiltonian

$$\hat{H} = r_{\rho}(a_{1}^{\dagger^{2}} - a_{1}^{\dagger}a_{2}^{\dagger})a_{1}a_{2} + r_{b}(a_{2}^{\dagger^{2}} - a_{2}^{\dagger})a_{2} + r_{d}(1 - a_{1}^{\dagger})a_{1}$$
(30)

yields

$$\frac{dA_1^{\dagger}}{dt} = r_{\rho}(A_1^{\dagger^2} - A_1^{\dagger}A_2^{\dagger})A_2 + r_d(1 - A_1^{\dagger})$$
(31)
$$\frac{dA_2^{\dagger}}{dt} = r_{\rho}(A_1^{\dagger^2} - A_1^{\dagger}A_2^{\dagger})A_1 + r_b(A_2^{\dagger^2} - A_2^{\dagger})$$
(32)

where $\vec{A}(t) = e^{t\hat{H}}\vec{a}e^{-t\hat{H}}$

$$\rightarrow \frac{dA_1}{dt} = r_p (-2A_1^{\dagger} + A_2^{\dagger})A_1 A_2 + r_d A_1$$
(33)

$$\frac{dA_2}{dt} = r_p A_1^{\dagger} A_1 A_2 + r_b (-2A_2^{\dagger} + 1)A_2$$
(34)

System of coupled, non-linear, operator-valued differential equations.

Evolution of average occupations

• Define occupation number operators:

$$N_i = a_i^{\dagger} a_i$$
 , $N = N_1 + \dots + N_k$ (35)

such that $N_i \vec{z}^{\vec{n}} = z_i \frac{\partial}{\partial z_i} (z_1^{n_1} \cdots z_k^{n_k}) = n_i \vec{z}^{\vec{n}}$

• Expected (or average) value: $\langle \ldots \rangle \equiv (\ldots)|_{\vec{z}=\vec{1}}$

$$\langle \Psi \rangle = 1$$
 (normalization of probability) (36)
 $\langle N_i \Psi \rangle = \sum_{\vec{n}} \psi_{\vec{n}} n_i$ (average occupation number) (37)

• Evolution of $x_i = \langle N_i \Psi \rangle$:

$$\frac{d}{dt}\langle N_i\Psi\rangle = \langle N_i\hat{H}\Psi\rangle = \sum_{\tau} r(\tau)(t_i(\tau) - s_i(\tau))\langle \vec{N}^{\underline{\vec{s}}(\tau)}\Psi\rangle$$
(38)

If $\langle \vec{N}^{\vec{s}(\tau)}\Psi \rangle = \langle \vec{N}\Psi \rangle^{\vec{s}(\tau)}$ we get $\frac{d}{dt}\vec{x} = \sum_{\tau} r(\tau)(\vec{t}(\tau) - \vec{s}(\tau))\vec{x}^{\vec{s}(\tau)}$ (for coherent states holds [Baez2013])

Analogies with quantum theory

$ \begin{array}{rllllllllllllllllllllllllllllllllllll$	e-particle quantum mechanics
probability distribution \vec{p} qua	ntum state (wave function) $\ket{\psi}$
transition rate matrix H one	-particle Hamiltonian <i>H</i>
$Many-body \ random \ walk \ \leftrightarrow \ Man$	y-body quantum mechanics
$ \ \ Occupation \ number \ description \ \ \leftrightarrow $	Field theory (second quantization)
Occupation number description \leftrightarrow Hamiltonian \hat{H}	Field theory (second quantization) Hamiltonian \hat{H}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Field theory (second quantization)Hamiltonian \hat{H} free quantum field theory (QFT)
Occupation number description \leftrightarrow Hamiltonian \hat{H} non-interacting walkers master equation for $\Psi(\vec{z})$	Field theory (second quantization)Hamiltonian \hat{H} free quantum field theory (QFT)QFT in Schrödinger picture
Occupation number description \leftrightarrow Hamiltonian \hat{H} non-interacting walkers master equation for $\Psi(\vec{z})$ evolution of operators $\vec{A^{\dagger}}, \vec{A}$	Field theory (second quantization)Hamiltonian \hat{H} free quantum field theory (QFT)QFT in Schrödinger pictureQFT in Heisenberg picture

Despite similarities in formalism, the typical questions to address can be rather different.

- We only considered one field (variables \vec{z} and operators $\vec{a}^{\dagger}, \vec{a}$). \rightarrow Easily generalized to **several fields**: \vec{z}, \vec{w}, \ldots and $\vec{a}^{\dagger}, \vec{a}, \vec{b}^{\dagger}, \vec{b}, \ldots$
- Mean-field approximation: expansion of \hat{H} up to **quadratic order** in creation and annihilation operators around 'classical' mean values.
- Path-integral approach [Peliti1985]
- In physics the background (spacetime) often simple, uniform (flat). Complex networks have rich, often non-rigid, structure.
 → Evolution of networks (i.e., of rates r(τ)) — plasticity

Summary

3

< □ > < □ > < □ > < □ > < □ >

Thank you for your attention.

- [Baez2012] J. C. Baez and J. D. Biamonte: Quantum Techniques for Stochastic Mechanics, 1209.3632 (2012)
- [Baez2013] J. C. Baez: Quantum Techniques for Reaction Networks, 1306.3451 (2013)
- [Doi1976] M. Doi: Second quantization representation for classical many-particle system, J. Phys. A: Math. Gen. **9** 1465 (1976)
- [Grassberger1980] P. Grassberger and M. Scheunert: Fock-space methods for identical classical objects, Fortsch. Phys. 28, 547-578 (1980)
- [Kleinert2016] H. Kleinert: Particles and Quantum Fields, World Scientific (2016)
- [Peliti1985] L. Peliti: Path integral approach to birth-death processes on a lattice, Journal de Physique 46 (9), 1469-1483 (1985)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト