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One-particle random walk on a graph

1 2 3

⇓

1 2 3

Linear evolution of the probability distribution (linear algebra)
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Multi-particle random walk on a graph

1 2 3

Independent evolution ⊕ interparticle interactions

⇓
Non-linear behaviour (particle influenced by configuration of the others)
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Outline

One-particle walk

Many walkers (Reaction networks)

Master equation and Rate equation

Quantum (Fock-space) techniques

The Hamiltonian and evolution of operators

Main reference: [Baez2012] (see last slide with bibliography)
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One-particle random walk on a graph

1 2 31

2

3

4

p1

p2

p3

i j
Hij

Graph (oriented, weighted) with vertex set V = {1, 2, 3}
Probability distribution p⃗ = (p1, p2, p3)

Weights → Transition rate matrix H =

−4 0 3
4 −2 1
0 2 −4


H is infinitesimal stochastic: Hij ≥ 0 (i ̸= j) and

∑
i∈V Hij = 0 (∀j)

(⇒ conservation of probability)
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0.1
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0.2
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0.4
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0.6
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 0.8
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One-particle random walk on a graph

Evolution equation (continuous time):

d

dt
p⃗ = Hp⃗, that is

d

dt
pi =

∑
j

j ̸=i

(Hijpj − Hjipi ) (1)

(c.f. Schrödinger equation iℏ d
dt |ψ⟩ = H|ψ⟩)

Solution: p⃗(t) = etHp⃗(0)

1 2 3

p1 p2 p3

t = 1
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Many walkers

From particle description (“where are individual particles located”)
to field description (“how many particles occupy individual places”)

Indistinguishable particles
→ definite (micro)state
characterized by
occupation numbers

n⃗ = (n1, . . . , nk) ∈ Nk
0 1 2 3

n1 = 4

n2 = 2

n3 = 3

Statistical (macro)state: (ψn⃗)n⃗∈Nk
0
(list of microstate probabilities)
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Many walkers - examples

Population dynamics:

vertices ↔ animal species

evolution ↔ birth, death, predation

Chemical reaction networks:

vertices ↔ substances

evolution ↔ chemical reactions
H O

H
H

H

O O
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Complexes and transitions

Complex: occupation vector (∈ Nk
0) with (typically) small entries

(2, 1, 0) (0, 0, 2)

Elementary transition τ : change of one complex into another

s⃗(τ) ... source complex
t⃗(τ) ... target complex
r(τ) ... rate constant

�s(τ) �t(τ)r(τ)

Example: chemical reaction 2H2 +O2 → 2H2O
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Master equation

Evolution of statistical state:

d

dt
ψn⃗′ =

∑
n⃗

Hn⃗′n⃗ ψn⃗ (2)

where many-body transition rate matrix

Hn⃗′n⃗ =
∑
τ

r(τ)n⃗ s⃗(τ)︸ ︷︷ ︸(δn⃗′,n⃗+t⃗(τ)−s⃗(τ)︸ ︷︷ ︸− δn⃗′,n⃗︸︷︷︸) (3)

↗ ↑ ↖
trans. rate for occup. n⃗ n⃗ becoming n⃗′ via τ n⃗′ transitioning away

Notation:

Vector exponent n⃗ s⃗ ≡ ns11 · · · nskk
Falling power ns ≡ n(n − 1) · · · (n − s + 1)

Kronecker delta δn⃗′,n⃗ = 1 if n⃗′ = n⃗ (otherwise δn⃗′,n⃗ = 0)

Remark: Matrix H is infinitesimal stochastic,
∑

n⃗′ Hn⃗′n⃗ = 0 (∀n⃗)
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Rate equation

Evolution of average occupations x⃗ = (x1, . . . , xk) (xi =
∑

n⃗ ni ψn⃗):

d

dt
x⃗ =

∑
τ

r(τ)
(
t⃗(τ)− s⃗(τ)

)
x⃗ s⃗(τ) (4)

Non-linear system of equations (dynamical system)

Good approximation (reduction) of the master equation for large
occupation numbers [Baez2013]
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Example: Lotka-Volterra predator-prey model

Elementary transitions: τ ∈ {p, b, d}

predation:

s⃗(p) = (1, 1)
rp−→ (2, 0) = t⃗(p)

birth:
s⃗(b) = (0, 1)

rb−→ (0, 2) = t⃗(b)

death:
s⃗(d) = (1, 0)

rd−→ (0, 0) = t⃗(d)

Rate equations: (x1 ... predator population, x2 ... prey population)

dx1
dt

= rpx1x2 − rdx1 ,
dx2
dt

= −rpx1x2 + rbx2 (5)
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Statistical state - power series representation

→ For each vertex i = 1, . . . , k introduce auxiliary variable zi

→ Represent statistical state (ψn⃗)n⃗∈Nk
0
by power series (probability

generating function)

Ψ(z1, . . . , zk) =
∑
n⃗

ψn⃗ z
n1
1 · · · znkk , Ψ(⃗1) ≡ Ψ(1, . . . , 1) = 1 (6)

Stochastic Fock space: all real (formal) power series in z1, . . . , zk

1) Definite microstate

Ψ = z41 z
2
2 z

3
3

1 2 3

n1 = 4

n2 = 2

n3 = 3

2) Statistical mixture of microstates

Ψ = ψ4,2,3z
4
1 z

2
2 z

3
3 +ψ2,5,2z

2
1 z

5
2 z

2
3 +ψ1,2,0z1z

2
2
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Examples

Product state: two independent particles A and B with location
distributions p⃗A and p⃗B

Ψ(z⃗) = (p⃗A · z⃗)(p⃗B · z⃗) =
∑
i ,j

1

2
(pAi p

B
j + pBi p

A
j︸ ︷︷ ︸)zizj (7)

symmetry → indistinguishability

Coherent state (single vertex, resp. many vertices):

Ψ(z) = ex(z−1) =
∞∑
n=0

e−x x
n

n!︸ ︷︷ ︸ zn , Ψ(z⃗) = e x⃗ ·(z⃗−1⃗) (8)

Poisson distribution with mean x
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Creation and annihilation operators

Inspired by quantum field theory (second quantization [Kleinert2016, Ch. 2]),

→ introduce for each vertex creation operator a†i :

a†iΨ = ziΨ , a†i z⃗
n⃗ = zn11 · · · zni+1

i · · · znkk (9)

and annihilation operator ai :

aiΨ =
∂

∂zi
Ψ , ai z⃗

n⃗ = ni z
n1
1 · · · zni−1

i · · · znkk (10)

a†i adds (for every microstate) one particle onto vertex i

ai removes one particle from vertex i (ni particles to choose from)

Commutation relations: [A,B] ≡ AB − BA

[ai , a
†
j ] = δij , [ai , aj ] = 0 , [a†i , a

†
j ] = 0 (11)

See [Doi1976] [Grassberger1980] [Baez2012] [Baez2013]
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Hamiltonian operator

Turn the many-body transition rate matrix

Hn⃗′n⃗ =
∑
τ

r(τ)n⃗ s⃗(τ)(δn⃗′,n⃗+t⃗(τ)−s⃗(τ) − δn⃗′,n⃗) (12)

into the Hamiltonian operator

Ĥ =
∑
τ

r(τ)
(
a⃗ †t⃗(τ) − a⃗ †s⃗(τ)

)
a⃗ s⃗(τ) (13)

→ Then master equation turns into evolution equation for generating
series Ψ(z⃗ , t) [Baez2013]:

d

dt
ψn⃗′ =

∑
n⃗

Hn⃗′n⃗ ψn⃗ → ∂

∂t
Ψ = Ĥ Ψ (14)

Follows from: (aszn = nszn−s)∑
n⃗′

Hn⃗′n⃗ z⃗
n⃗′ =

∑
τ

r(τ)n⃗ s⃗(τ)(z⃗ n⃗+t⃗(τ)−s⃗(τ) − z⃗ n⃗) = Ĥz⃗ n⃗ (15)
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Examples of Hamiltonian operators

Non-interacting walkers:

s⃗(i , j) = (0, . . . ,
j
1, . . . , 0)

rij−→ (0, . . . ,
i
1, . . . , 0) = t⃗(i , j)

Ĥ =
k∑

i ,j=1

rij(a
†
i − a†j )aj (16)

Lotka-Volterra model:
a†1, a1 ... predator operators; a†2, a2 ... prey operators

Ĥ = rp(a
† 2

1 − a†1a
†
2)a1a2 + rb(a

† 2

2 − a†2)a2 + rd(1− a†1)a1 (17)

Branching process (on one vertex):

s⃗(m) = (1)
rm−→ (m) = t⃗(m)

Ĥ = r0(1− a†)a+
∞∑

m=2

rm(a
†m

− a†)a (18)
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Evolution operator

The Hamiltonian Ĥ defines time evolution operator U(t) via:

dU

dt
= ĤU , U(0) = 1 (19)

Assuming, for simplicity, that rate constants r(τ) (and therefore Ĥ)

are time-independent: U(t) = etĤ

State evolution can be cast, using Ψ(z⃗) = Ψ(a⃗ †) 1, and Ĥ 1 = 0, as

Ψ(z⃗ , t) = U(t)Ψ(z⃗ , 0) = Ψ(etĤ a⃗ †e−tĤ︸ ︷︷ ︸
A⃗†(t)

, 0) 1 (20)

Here A⃗ †(t) satisfies (∀i)

dA†
i

dt
= [Ĥ,A†

i ] = U(t) [Ĥ, a†i ]U
−1(t) , A†

i (0) = a†i (21)

V. Zatloukal (Czech Tech. Univ. Prague) Field-theoretical description of many-body random walks on graphs 18 / 26



Example: Branching process

Hamiltonian

Ĥ = r0(1− a†)a+
∞∑

m=2

rm(a
†m

− a†)a (22)

yields equation for A†(t) (recall: [a, a†] = 1)

dA†

dt
= r0(1− A†) +

∞∑
m=2

rm(A
†m

− A†) , A†(0) = a† (23)

→ Assuming rm = 0 for m ≥ 2 (particles only vanish at rate r0)

A†(t) = 1− e−r0t + e−r0ta† (24)

→ Evolved state reads

Ψ(z , t) = Ψ(1− e−r0t + e−r0tz , 0) =
∑
n

ψn(0)(1− e−r0t + e−r0tz)n (25)

Time evolution transformed z to 1− e−r0t + e−r0tz .
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Example: Non-interacting walkers

Hamiltonian

Ĥ =
k∑

i ,j=1

rij(a
†
i − a†j )aj (26)

yields

dA†
j

dt
=

∑
i

rij(A
†
i − A†

j ) =
∑
i

A†
iHij , A†(0) = a†, (27)

where we denoted Hij = rij (for i ̸= j) and Hjj = −
∑

i rij elements of a
‘rate matrix’ H.

→ We find

A†
j (t) =

∑
i

a†i (e
tH)ij → Ψ(z⃗ , t) = Ψ(etH

⊺
z⃗ , 0) (28)

For one particle: ((0, . . . , 1
i
, . . . , 0) → i)

Ψ(z⃗ , t) =
∑
j

ψj(0)
∑
i

zi (e
tH)ij =

∑
i

ψi (t)︷ ︸︸ ︷∑
j

(etH)ijψj(0) zi (29)
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Example: Lotka-Volterra model

Hamiltonian

Ĥ = rp(a
† 2

1 − a†1a
†
2)a1a2 + rb(a

† 2

2 − a†2)a2 + rd(1− a†1)a1 (30)

yields

dA†
1

dt
= rp(A

† 2

1 − A†
1A

†
2)A2 + rd(1− A†

1) (31)

dA†
2

dt
= rp(A

† 2

1 − A†
1A

†
2)A1 + rb(A

† 2

2 − A†
2) (32)

where A⃗(t) = etĤ a⃗ e−tĤ

→ dA1

dt
= rp(−2A†

1 + A†
2)A1A2 + rdA1 (33)

dA2

dt
= rpA

†
1A1A2 + rb(−2A†

2 + 1)A2 (34)

System of coupled, non-linear, operator-valued differential equations.
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Evolution of average occupations

Define occupation number operators:

Ni = a†i ai , N = N1 + · · ·+ Nk (35)

such that Ni z⃗
n⃗ = zi

∂
∂zi

(zn11 · · · znkk ) = ni z⃗
n⃗

Expected (or average) value: ⟨. . .⟩ ≡ (. . .)|z⃗=1⃗

⟨Ψ⟩ = 1 (normalization of probability) (36)

⟨NiΨ⟩ =
∑
n⃗

ψn⃗ ni (average occupation number) (37)

Evolution of xi = ⟨NiΨ⟩:
d

dt
⟨NiΨ⟩ = ⟨Ni ĤΨ⟩ =

∑
τ

r(τ)
(
ti (τ)− si (τ)

)
⟨N⃗ s⃗(τ)Ψ⟩ (38)

If ⟨N⃗ s⃗(τ)Ψ⟩ = ⟨N⃗Ψ⟩s⃗(τ) we get d
dt x⃗ =

∑
τ r(τ)

(
t⃗(τ)− s⃗(τ)

)
x⃗ s⃗(τ)

(for coherent states holds [Baez2013])
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Analogies with quantum theory

One-particle random walk ↔ One-particle quantum mechanics

probability distribution p⃗ quantum state (wave function) |ψ⟩
transition rate matrix H one-particle Hamiltonian H

Many-body random walk ↔ Many-body quantum mechanics

Occupation number description ↔ Field theory (second quantization)

Hamiltonian Ĥ Hamiltonian Ĥ
non-interacting walkers free quantum field theory (QFT)
master equation for Ψ(z⃗) QFT in Schrödinger picture

evolution of operators A⃗†, A⃗ QFT in Heisenberg picture
rate equation for x⃗ classical field equations

Despite similarities in formalism, the typical questions to address can be
rather different.
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Outlook

We only considered one field (variables z⃗ and operators a⃗ †, a⃗).
→ Easily generalized to several fields: z⃗ , w⃗ , . . . and a⃗ †, a⃗, b⃗ †, b⃗, . . .

Mean-field approximation: expansion of Ĥ up to quadratic order in
creation and annihilation operators around ‘classical’ mean values.

Path-integral approach [Peliti1985]

In physics the background (spacetime) often simple, uniform (flat).
Complex networks have rich, often non-rigid, structure.
→ Evolution of networks (i.e., of rates r(τ)) — plasticity
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Summary

zi

a
†
i , ai
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