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I. HOW TO MULTIPLY VECTORS – THE GEOMETRIC PRODUCT

We consider a real vector space V , and define the geometric product ab by the following rules
[1, 2] (a, b, c ∈ V ):

(ab)c = a(bc), (1)

a(b+ c) = ab+ ac, (2)

a2 = |a|2, (3)

where |a| is a positive scalar called the magnitude of a, and |a| = 0 implies a = 0. 1

∗Electronic address: zatlovac@gmail.com; URL: http://www.zatlovac.eu
1 Here we presume spaces with positive-definite non-degenerate metric.
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The geometric product is not commutative, but we can define the inner and outer product
as, respectively, its symmetric and anti-symmetric part:

a · b =
1

2
(ab+ ba), (4)

a ∧ b =
1

2
(ab− ba). (5)

The inner (or dot) product of two vectors is a scalar, as follows by expanding the scalar quantity
(a+ b)2. The outer (or wedge) product of two vectors is a new geometric entity called a bivector,
which represents a directed area spanned by the vectors a and b.

The geometric product can be decomposed into a sum of a scalar and a bivector

ab = a · b+ a ∧ b. (6)

This representation is sometimes used as a definition of the geometric (of Clifford) product,
provided the inner and outer products are know a priori. Our construction, however, introduced
the geometric product as a single primary concept. 2

II. GEOMETRIC ALGEBRA OF 2D SPACE

Let {e1, e2} be an orthonormal basis of a two-dimensional vector space. Geometric product of
any pair of vectors can be inferred from the products of basis vectors

e2
1 = e2

2 = 1 , e1e2 = e1 ∧ e2 = −e2e1 ≡ I, (7)

with the help of distributivity.
Products with the bivector I are

e1I = −Ie1 = e2 , e2I = −Ie2 = −e1 , I2 = e1e2e1e2 = −1. (8)

The last relation suggests that expressions of the form α+βI, where α and β are scalars, can be
interpreted as complex numbers. (In particular because they always commute, and their set is
closed under multiplication.) The important conceptual point here is that the ‘unit imaginary’ I
is not an alien formal entity, but has a clear geometric meaning — it is a unit bivector representing
the plane spanned by e1 and e2.

The order of basis vectors in I is significant. Eq. (8) tells us that right multiplication by I
maps e1 to e2, and e2 to −e1, hence rotating any vector counterclockwise by 90◦. In contrast,
the unit bivector e2e1 = −I (which also squares to −1) rotates vectors in the opposite direction.

To depict complex numbers α + βI as points in the plane we need to choose a unit vector to
represent the ‘real axis’. For example, taking e1, and forming

u = e1(α+ βI) = αe1 + βe2 (9)

renders the real and imaginary part, α and β, as components of the vector u in the {e1, e2} basis.
Complex numbers are useful in physics whenever 2D rotations take place. In the geometric

algebra approach, in order to maintain clear geometric interpretation, we distinguish the object

2 This is also the reason for using the simplest possible symbol (the empty one) to denote the geometric product.
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that are being rotated — the vectors, and the object that perform the rotation — the rotors.
Rotors in 2D are unit complex numbers

Uθ = cos θ + I sin θ = eIθ. (10)

They naturally act on vectors via right multiplication, e.g.,

e1Uθ = e1 cos θ + e2 sin θ, (11)

and analogously for e2, showing that vectors are, indeed, rotated by angle θ in the counterclock-
wise direction.

One can visualize a rotor Uθ as a directed arc on a unit circle with length θ, or, more precisely,
as an equivalence class of all such arcs, since fixing the starting point would correspond to a
specific choice of the real axis.

III. GEOMETRIC ALGEBRA OF 3D SPACE

In 3D there are three orthonormal vectors {e1, e2, e3}, which can be pairwise multiplied to give
rise to three unit bivectors

e1e2 = e3I , e2e3 = e1I , e3e1 = e2I, (12)

where I = e1e2e3 denotes a product of all basis vectors — the pseudoscalar of the 3D space.
The pseudoscalar maps vectors to bivectors, and vice versa, via right (or left) multiplication —

the so called duality operation. For example, to a vector b = β1e1 +β2e2 +β3e3 there corresponds
a bivector

B = bI = β1e2e3 + β2e3e1 + β3e1e2. (13)

Duality can be used to express the conventional vector cross product in terms of the wedge
product:

a× b = b ∧ a I. (14)

(Here we use the convention that the inner and outer product have priority before the geometric
product.) Only in 3D, however, an antisymmetric product of two vectors can be identified with
a vector (via duality). In generic dimension, the antisymmetric wedge product yields a bivector
a ∧ b.

Rotations are usually presented as taking place around a particular axis. This is a peculiarity
of the three-dimensional place, which does not generalize to higher dimensions. What does
generalize is the concept of rotation in a particular plane. 3

Suppose, for example, that we wish to rotate a generic 3D vector a in the plane spanned by e1

and e2 by an angle θ in the direction ‘from e1 to e2’ to obtain a new vector a′. Geometrically this
means that we make a decomposition a = a|| + a⊥, where a|| lies in the e1, e2 plane and a⊥ is
perpendicular to it, rotate a||, and finally add a⊥, which has been left unchanged. Algebraically,

a′ = a||e
θe1e2 + a⊥, (15)

3 Of course, in 3D, lines are related to planes via duality.
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where e1e2 now plays the role of the bivector I in Section II. The right-hand side can be cast
in terms of a once we assert the commutativity properties a||e1e2 = −e1e2a||, a⊥e1e2 = e1e2a⊥,
with the result

a′ = e−
θ
2 e1e2a||e

θ
2 e1e2 + e−

θ
2 e1e2a⊥e

θ
2 e1e2 = e−

θ
2 e1e2 a e

θ
2 e1e2 . (16)

It is now clear that any bivector defines a rotation a′ = e−B/2 a eB/2, which takes place in the
B-plane, in the sense characterizes by the orientation of B, and by the angle equal to the area
(the magnitude) of B. In turn, any rotation can be characterized by a certain bivector. 4

All unit bivectors square to −1. Hence, if we make the identification

i ≡ −e1e2 , j ≡ −e2e3 , k ≡ −e3e1, (17)

we reproduce the defining relations of the algebra of quaternions

i2 = j2 = k2 = ijk = −1. (18)

A generic quaternion is a sum of a scalar and a bivector, and the set of these is closed under
multiplication. But, in fact, we don’t have to bother about quaternions anymore — all their
computational power is encoded in the geometric algebra of the three-dimensional space.

IV. GENERIC MULTIVECTORS

Let us summarize that a two-dimensional vector space V2 endowed with the geometric product
accommodates four linearly independent elements: one scalar 1, two vectors e1 and e2, and one
bivector e1e2. Their linear combinations span the four-dimensional geometric algebra G(V2).

For a 3D space V3, the geometric algebra G(V3) consists of eight basis elements: one scalar 1,
three vectors e1, e2, e3, three bivectors e1e2, e2e3, e3e1, and one trivector e1e2e3.

For vector spaces of generic dimension n the geometric algebra G(Vn) consists of elements

1 , ei , eiej (i < j) , . . . , e1 . . . en, (19)

where the basis {ei}ni=1 is, for simplicity, chosen orthogonal so that eiej = ei ∧ ej . The elements
are grouped according to the number of vectors being multiplied. There are

(
n
r

)
linearly inde-

pendent r-vectors that are built of r-tuples of the basis vectors. The total dimension of G(Vn) is
2n.

Linear combinations of elements (19) are called multivectors. Generic multivector is a sum

A =

n∑
r=0

〈A〉r, (20)

where 〈A〉r are r-vectors, or, homogeneous multivectors of grade r.
Outer product of r vectors is defined in terms of the geometric product as the totally anitsym-

metrized expression

a1 ∧ . . . ∧ ar =
∑
π∈Sn

sgn(π)aπ(1) . . . aπ(n), (21)

4 The two-side representation of rotations, Eq. (16), is a significant achievement of the geometric algebra formal-
ism. We shall have more to say about rotations in arbitrary-dimensional spaces in Section V.
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generalizing the definition (5). It vanishes whenever one of the vectors is a linear combination
of the remaining vectors (in particular, when two of the vectors coincide). If aj ’s are linearly
independent, their outer product represents an r-dimensional oriented volume. One can then
always find, via the Gram-Schmidt process [1, Ch. 1-3], an orthogonal set of vectors âj to write
a1 ∧ . . . ∧ ar = â1 . . . âr. r-vectors of the form (21) are called blades. 5

The inner and outer product can be generalized as follows (a is a vector and Ar an r-vector):

a ·Ar =
1

2
(aAr − (−1)rAra) = (−1)r−1Ar · a,

a ∧Ar =
1

2
(aAr + (−1)rAra) = (−1)rAr ∧ a. (22)

The inner product with vector always lowers the grade of Ar by one, while the outer product
raises the grade by one (see [2, Ch. 4.1.2] for details). In general, the geometric product of Ar
and Bs can be decomposed as

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + . . . 〈ArBs〉r+s, (23)

and the symbols · and ∧ are retained for the lowest and highest grade terms in the series:

Ar ·Bs = 〈ArBs〉|r−s|,
Ar ∧Bs = 〈ArBs〉r+s. (24)

The wedge product is associative.
The magnitude of an r-vector Ar is defined

|Ar| =
√
Ãr ·Ar, (25)

where ˜ is the reversion operation defined by ÃB = B̃Ã, linearity, and ã = a for vectors. 6 Note

that Ãr = (−1)r(r−1)/2Ar. The magnitude of a blade Ar = a1 ∧ . . . ∧ ar has direct geometric
interpretation. It is the volume of the parallelogram spanned by the vectors a1, . . . , ar (as follows
from Formula (28) below).

The inverse of a blade Ar is

A−1
r =

Ãr
|Ar|2

, (26)

since Ãr ·Ar = ÃrAr. Note, however, that multivectors in general are not invertible.
Any r-vector Ar defines a scalar-valued r-linear totally antisymmetric linear map (an r-form)

αr(b1, . . . , br) = Ãr · (b1 ∧ . . . ∧ br). (27)

In particular, for a blade Ar = a1 ∧ . . . ∧ ar one finds

αr(b1, . . . , br) = det(ai · bj), (28)

5 Note, however, that not all homogeneous multivectors are blades. The simplest counter-example is found in
dimension 4, where the bivector αe1e2 + βe3e4 cannot be written as a wedge product of two vectors.

6 In the formalism, we obey a useful notation convention, which states that scalars are denoted by Greek letters
α, β, . . ., vectors by lower case Latin letters a, b, . . ., and other multivectors by upper case Latin letters A,B, . . ..
However, this convention often clashes with traditional symbols of quantities used in applications.
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which is the determinant of the r × r matrix with entries ai · bj .
Many algebraic identities can be derived to manipulate multivectors, and hence turn the

geometric algebra into an efficient computational language. Since the purpose of these notes is
to give a general overview rather than technical exposition, the formulas will not be presented
here, and the reader is relegated to Refs. [1, Ch. 1-1] and [2, Ch. 4.1]. Nevertheless, most of the
time the identities can be understood, at least qualitatively, on the basis of geometric intuition.

Vectors in geometric algebra can be represented by matrices (cf. Dirac gamma matrices)
and the geometric product by matrix multiplication. Although matrices can be used to make
contact with traditional treatment of Clifford algebras, they neither clarify the theory nor simplify
calculations, and so we don’t introduce them at any point.

V. PROJECTIONS, REFLECTIONS, ROTATIONS

Every nonzero r-blade Ar determines a unique r-dimensional linear subspace Ar of vector
space Vn consisting of vectors that satisfy a ∧Ar = 0. Indeed, suppose {a1, . . . , ar} is a basis of
Ar. Then a ∈ Ar if and only if a can be expressed as a linear combination a =

∑r
i=1 αiai, and

this in turn is equivalent with the condition a ∧Ar = 0 for Ar = a1 ∧ . . . ∧ ar. 7

The identification of a linear subspace Ar with a blade Ar can be used to derive an elegant
formula for the projection of a vector b onto Ar. Write

b = bArA
−1
r = b ·ArA−1

r + b ∧ArA−1
r = (b ·Ar) ·A−1

r + (b ∧Ar) ·A−1
r . (29)

The first term is a vector that lies in Ar, while the second is perpendicular to Ar. 8 Hence, we
find the orthogonal projection onto Ar

b|| = b ·ArA−1
r , (30)

and rejection from Ar

b⊥ = b ∧ArA−1
r . (31)

Reflections also enjoy an elegant representation when we employ the geometric product. Take
a unit vector u, and reflect a vector a in the plane perpendicular to u:

a′ = a− 2 a · uu = a− auu− uau = −uau. (32)

Reflections are orthogonal transformations, as can be verified by writing

a′ · b′ =
1

2
(a′b′ + b′a′) =

1

2
(uabu+ ubau) = u a · b u = a · b, (33)

and have determinant −1.
Composition of reflections along multiple directions u1, . . . , ur is simply

a′ = (−1)rUaŨ , U = ur . . . u1, (34)

7 A given subspace Ar determines the corresponding blade Ar only up to scalar multiplication, and the blade
itself can be presented as an outer product of many different ordered sets of vectors.

8 The latter claim follows from (
(b ∧Ar) ·A−1

r

)
· ai = (b ∧Ar) · (A−1

r ∧ ai) = 0.
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is a multivector (called the versor) that has the property UŨ = 1. In turn, every orthogonal
transformation can be described as a composition of at most n reflections (the Cartan-Dieudonné
theorem).

Composition of an even number of reflections yields an orthogonal transformation with deter-

minant +1 — a rotation a′ = RaR̃, where R is commonly used to denote even versors (rotors).
Simple rotation is determined by a pair of unit vectors, R = vu. Let θ

2 denote the angle
between u and v, and cast

R = vu = v · u+ v ∧ u = cos
θ

2
− u ∧ v
|u ∧ v|

sin
θ

2
= e−B/2 , B = θ

u ∧ v
|u ∧ v|

. (35)

Analogously as in Section III, we find that the rotor (35) realizes a rotation in the plane of
bivector blade B through angle θ = |B| in the direction dictated by the orientation of B. Note
that as θ increases by 2π, the rotor R picks up the factor −1. This minus sign drops out once

the expression RaR̃ is formed.
Generic rotation is a composition of simple rotations. For example,

a′ = R2R1aR̃1R̃2 = RaR̃ , R = R2R1, (36)

where the total rotor R can be cast, with a help of the Baker-Campbell-Hausdorff formula, as

R = R2R1 = e−B2/2e−B1/2 = e−
1
2 (B1+B2)− 1

8 (B1B2−B2B1)+..., (37)

where “ . . . ” gathers higher commutators of bivectors B1 and B2.
In passing it is convenient to introduce the commutator product of multivectors A and B,

A×B =
1

2
(AB −BA), (38)

9 which satisfies the Jacobi identity

A× (B × C) + C × (A×B) +B × (C ×A) = 0, (39)

and the “Leibniz rule”

A× (BC) = (A×B)C +B(A× C). (40)

In addition, if B is a bivector and Ar an r-vector, then B × Ar is again an r-vector, i.e., the
operation of taking the commutator product with a bivector is grade-preserving. In particular,
we observe that the exponent on the right-hand side of Eq. (37) is a bivector (bivectors form a Lie
algebra under the commutator product), and hence a generic rotation can always be presented
in the canonical form

a′ = e−B/2 a eB/2 (41)

where B is a (not necessarily simple) bivector.
Bivectors naturally define skew-symmetric linear maps

B(a) = a ·B. (42)

9 There is no danger in using the same symbol as for the cross product of vectors in 3D, as the latter can be
completely replaced by the outer product via Eq. (14), and so we never use it.



8

Skew-symmetry is easily verified by writing

b · B(a) = b · (a ·B) = (b ∧ a) ·B = −(a ∧ b) ·B = −a · B(b). (43)

Vice versa, to any skew-symmetric map B there is a bivector B that represents it. Namely, if
{ei}ni=1 is an orthonormal basis of Vn, then

B =
1

2
ei ∧ B(ei) (44)

(sum over i implied) satisfies

a ·B =
1

2

(
a · eiB(ei)− a · B(ei)ei

)
=

1

2

(
B(a) + B(a) · eiei

)
= B(a). (45)

Skew-symmetric maps form an algebra under commutation. Hence the commutator of two
skew-symmetric maps B1 and B2 is representable by a bivector, which we find by calculating

B1(B2(a))− B2(B1(a)) = (a ·B2) ·B1 − (a ·B1) ·B2 = a · (B2 ×B1) (46)

to be the commutator product of the corresponding bivectors B1 and B2. (We have used the
Jacobi identity (39).)

We have seen several examples of linear maps that can be expressed in terms of multivector
operations within the geometric algebra: projection, rejection, reflection, rotation, and skew-
symmetric mapping. There was no need to use explicit basis or matrix representation to define
these maps once we adopted the idea of (geometric) multiplication of vectors.

It is natural to extend linear maps on vectors to linear maps on generic multivectors. Thus,
starting with a linear map A, we define the corresponding outermorphism by requiring

A(a1 ∧ . . . ∧ ar) = A(a1) ∧ . . . ∧ A(ar), (47)

for r = 1, . . . , n, A(α) = α for scalars, and linearity.

In particular, for rotations, the rotor property RR̃ = 1 implies that

(Ra1R̃) ∧ . . . ∧ (RarR̃) = Ra1 ∧ . . . ∧ arR̃, (48)

i.e., the two-side prescription works for generic multivectors in the same way as for vectors.
For infinitesimal rotation, R = e−εB/2, we find up to the first order in ε

Ra1 ∧ . . . ∧ arR̃ ≈ a1 ∧ . . . ∧ ar + ε(a1 ∧ . . . ∧ ar)×B,

(Ra1R̃) ∧ . . . ∧ (RarR̃) ≈ a1 ∧ . . . ∧ ar + ε

r∑
i=1

a1 ∧ . . . ∧ ai−1 ∧ (ai ·B) ∧ ai+1 ∧ . . . ∧ ar. (49)

Since the two lines coincide, we have derived the identity

(a1 ∧ . . . ∧ ar)×B =

r∑
i=1

a1 ∧ . . . ∧ ai−1 ∧ (ai ·B) ∧ ai+1 ∧ . . . ∧ ar. (50)

VI. DIFFERENTIATION

Let Rn be a space of points x, and Vn a tangent space, over which a geometric algebra G(Vn)
is constructed. Now we can start to talk about the geometric calculus, i.e., differentiation and
integration that takes advantage of the rich algebraic structure of geometric algebra. 10

10 We consider a flat underlying space for simplicity, although theory for curved manifolds exists [1, Chs. 4,5,6,7].
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The derivative in direction of vector a of a multivector-valued function F (x) is defined as usual:

a · ∂F = lim
ε→0

F (x+ εa)− F (x)

ε
. (51)

It is a grade-preserving operation.
Choosing an orthonormal frame {ei}ni=1, we define the vector derivative 11

∂F = ei ∂iF , ∂i ≡ ei · ∂. (52)

The operator ∂ (also known as the Dirac operator) has algebraic properties of a vector, and so
the vector derivative splits into two parts,

∂F = ∂ · F + ∂ ∧ F. (53)

If F is vector-valued, then ∂ · F is simply the divergence of the vector field F . In 3D the other
term ∂∧F is directly related to the curl (or ‘rot’ operation) via Eq. (14), and in generic dimension
it corresponds to the exterior derivative [1, Ch. 6-4]. For a scalar field, ∂φ is the gradient of φ.
The square of ∂ is the Laplace operator:

∂2F = (ei∂i)(ej∂j)F = (ei · ej∂i∂j + ei ∧ ej∂i∂j)F =

n∑
i=1

∂2
i F, (54)

where the ‘wedge’ term vanishes due to (assumed) interchangeability of partial derivatives.
To state the general Leibniz rule for vector derivative,

∂(FG) = (∂F )G+ ∂̀F G̀, (55)

we have introduced the ‘accent’ notation. The reason is that the multivector fields F and G, and
∂ don’t commute in general, and we want to avoid using an explicit basis as in Eq. (52).

Suppose now we limit ourselves to 2D and consider a complex (in the sense of 2D geometric
algebra) function F (x) = α(x)+β(x)I, I = e1e2. The vector derivative operator ∂ = e1∂1 +e2∂2

acts on F as

∂F = e1∂1α+ e2∂2α+ e1I∂1β + e2I∂2β = e1(∂1α− ∂2β) + e2(∂2α+ ∂1β). (56)

If we demand that ∂F = 0, we recover the Cauchy-Riemann conditions for holomorphic functions.
In generic dimension, multivector fields that satisfy condition ∂F are referred to as monogenic

functions. Similarly as holomorphic function, their values in a given region are determined by
an integral over the boundary of that region (as we shall see in Section VII below).

VII. INTEGRATION

Directed integral of a multivector-valued function F (x) over a region Ω ⊂ Rn is defined as the
(Riemann) infinite sum ∫

x∈Ω

dX(x)F (x) ≡ lim
n→∞

n∑
i=1

∆X(xi)F (xi), (57)

11 We could also use a non-orthonormal {ai}ni=1, but then one has to define the reciprocal frame [2, Ch. 4.3]

{ai}ni=1 consisting of vector that satisfy ai · aj = δji to expand ∂ = aiai · ∂.
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where ∆X(xi) are n-vectors (pseudoscalars of Vn) defined at points xi, whose magnitude
|∆X(xi)| equals the volume of the i-th cell in the n-th discretization of the region Ω.

Integral over submanifolds Σ of Rn can be defined analogously — the surface element dS(x)
is now an r-vector field (for r-dimensional submanifolds) that slides along Σ, and can change its
direction.

The directed integral can be used to define the vector derivative (and hence may be regarded as
more fundamental concept). Take a point x0 ∈ Rn and a shrinking sequence of neighbourhoods
R of x0. Then the vector derivative of F at point x0 is the limit

∂F = lim
|R|→0

1

R

∮
∂R

dSF , R =

∫
R
dX = I

∫
R
|dX| = |R|I, (58)

where I is the unit pseudoscalar of Vn. If R are chosen to be n-dimensional cubes, and u =
I−1dS/|dS| denotes the unit normal vector, we easily verify

lim
|R|→0

1

R

∮
∂R

dSF = lim
|R|→0

1

|R|

∮
∂R
|dS|uF = ei∂iF = ∂F. (59)

Note that by setting F → I−1GIF in Eq. (57), we make sense of the integral
∫

Ω
GdXF , where

F and G are arbitrary multivector-valued functions.
A key achievement of the integration theory is the Fundamental theorem of (geometric) cal-

culus, which states that ∫
Ω

G̀dX∂̀F̀ =

∮
∂Ω

GdSF, (60)

where Ω is an open region in Rn, and dX and dS are directed volume elements on Ω and ∂Ω,
respectively. 12 To show this for the case G ≡ 1, one uses the integral representation of the vector
derivative, Eq. (58), the definition of directed integral, Eq. (57), and the resolution Ω =

⋃n
i=1 Ωi.

One finds ∫
Ω

dX∂F = lim
n→∞

n∑
i=1

∆X(xi)∂F (xi) = lim
n→∞

n∑
i=1

∮
∂Ωi

dSF =

∮
∂Ω

dSF. (61)

To see the power and generality of the Fundamental theorem, let us consider its three special
cases. First, we set G = I−1, and consider vector-valued F to obtain∫

Ω

I−1dX∂F =

∫
Ω

∂F |dX| =
∮
∂Ω

I−1dSF =

∮
∂Ω

uF |dS| , u = I−1dS/|dS|, (62)

whose scalar part is the Gauss theorem of vector analysis.
Second, for Ω an m-dimensional embedded manifold choose G ≡ 1, consider m − 1-vector

valued F , and restrict to the scalar part to find∫
Ω

(dX · ∂) · F =

∫
Ω

dX · (∂ ∧ F ) =

∫
∂Ω

dS · F, (63)

12 The Fundamental theorem can be generalized from flat Rn to manifolds [1, Ch. 7-3]. In particular, if Ω is an
m-dimensional manifold embedded in Rn then the only modification of Eq. (60) consists in replacing dX∂̇ by
dX · ∂̇, which projects the vector derivative of the ambient space onto Ω [2, Ch. 6.4].
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which is the celebrated Stokes theorem. 13

Finally, assume G(x, x′) is a vector-valued function of two points (the Green function of the
vector derivative operator) that satisfies

∂xG = −G̀∂̀x′ = δ(n)(x− x′). (64)

A use of the Leibniz rule in Eq. (60), and a straightforward rearrangement yield (for x′ ∈ Ω)

(−1)nIF (x′) =

∫
x∈∂Ω

G(x, x′)dS(x)F (x)−
∫
x∈Ω

G(x, x′)dX(x)∂F (x). (65)

If, in addition, the function F is monogenic (i.e., ∂F = 0), and we use an explicit expression for
the Green function,

G(x, x′) =
Γ(n/2)

2πn/2
x− x′

|x− x′|n
, (66)

we arrive at the formula

F (x′) = (−1)n
Γ(n/2)

2πn/2
I−1

∮
x∈∂Ω

x− x′

|x− x′|n
dS(x)F (x), (67)

which expresses the value of a monogenic function F at a point inside the region Ω by an integral
over the boundary ∂Ω.

Eq. (67) generalizes the Cauchy integral formula of complex analysis, to which it reduces in
two dimensions. Indeed, setting n = 2, F (x) = α(x) + β(x)I, and z = e1x (as in Eq. (9)), we
find

F (x′) =
1

2πI

∮
x∈∂Ω

(x− x′)−1e1e1dS(x)F (x) =
1

2πI

∮
∂Ω

F (e1z)

z − z′
dz. (68)

VIII. APPLICATIONS

Many physical applications of the above formalism can be found in Ref. [2]. Let us mention,
for example, rigid-body motion in Ch. 3.4 (see also [3]), electrodynamics and spacetime physics
in Ch. 5 and 7 (see also [4]), differential geometry of embedded manifolds in Ch. 6.5 (see also [1,
Ch. 5] or brief summaries [5, 6]), and real Pauli-Schrödinger quantum mechanics in Ch. 8.1 (see
also [7]).
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13 Of course, to recover the traditional differential-geometric statement of Stokes theorem one has to make con-
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