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How does the exchange statistics influence transport properties of anyons?

Anderson localization and anyons

Definition of the anyonic quantum walk model with randomness
Abelian anyons and multiple scattering of waves

Non-Abelian (Ising model) anyons

Summary of results:
localization of Abelian, propagation of non-Abelian anyons

V. Zatloukal, L. Lehman, S. Singh, J.K. Pachos, and G.K. Brennen, Transport properties
of anyons in random topological environments, PRB 90, 134201 (2014)
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Indistinguishable ™™\ In 3 (or more) dimensions
particles  J ®

exchanged N

bosons: 1
fermions: -1

In two spatial dimensions a richer statistical behavior possible.

Aharonov-Bohm effect flux-charge composite particles
B

e y In 2 dimensions
Abelian anyons: phase e’

® non-Abelian anyons: unitary U

phase acquired: e
d>:ffSB-dS:3§7A-dl

Quasiparticles in fract. quantum Hall effect.
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Anderson localization
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Anderson localization: particle stops propagating due to destructive
interference effect of adding random phases.
— What about anyonic statistical phases?

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
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Definition of the anyonic quantum walk model

Quantum analogue of the classical drunken sailor problem.

Anyon dynamics:

e Walking anyon moves on a discrete line (coordinate s) in discrete
time steps (t)

@ Braiding counterclockwise around islands
@ Islands are populated by static anyons of the same type as the walker

e Randomness in the (quenched) island occupation numbers mj
Purely statistical interactions!
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Definition of the anyonic quantum walk model

bs_1 bs bst1 ... braid generators

Hilbert space of the system: H = Hspace @ Heoin @ H fusion
{walker's position} ® {direction of movement} ® {statistical interactions}

Initial localized state: [Wq) = |s0)space|C0) coin|Po) fusion
One-step operator: W =TU , U= - (] ') ... Hadamard coin toss

T=>ls=1)sl
+|s + 1)(s|
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Spatial distribution of the walker

o State after t steps: |V(t)) = W W)
o Reduced spatial density matrix: pspace(t) = treointrfusion| V(1)) (W(t)]
o Walker's spatial distribution: p(s, t) = (s|pspace(t)|s)

1 < :’SOC_,:’ e
p(s,t) = >t Z (—=1)7@+2@)ry /s
(3,d)~s
3e€ {0,1}"... a bitstring of walker's moves, e.g.
7=(0,1,1,...,0,1),
(3,3) ~ s... pairs of paths with a; = a} that lead to site s,

z(a) = Zj:f ajaj41 for the Hadamard coin and ¢y = 0,

YViz = Bz |¢o><¢0|3~/,
By is a braidword composed of the braid generators b, (they
depend on ms), e.g. By = bsy_1bsy—1bs, - - - bs—1bs_1.

bs's capture (Abelian or non-Abelian) statistics of the particles.
Berlin, January 5, 2015 8/1
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Abelian anyons

@ b = (ei¢) ™ & is the anyonic exchange angle
Variance as a measure of spreading: o2(t) = 3_, p(s, t)s? — [, p(s, t)s]?
{({o®(t))) ... averaged over occupation numbers m;

Uniform filling (ms = m, Vs) Random filling (ms's are random)

o?(t) ~ t?... ballistic propagation | ((¢%(t))) ~ const ... localization
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Randomization of phases — destructive interference.— localization
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Abelian quantum walk as multiple scattering of waves

Abelian anyonic quantum walk Multiple scattering of waves

@ Step of the walk: @ Scattering event:

coin operator U = % (14) scattering matrix (/%)

e
@ Randomness in island occupation | <> @ Randomness in distances
numbers m; between scatterers

e

<

@ Phase acquired upon traveling
from scatterer j to j + 1: §;

@ Statistical phase upon braiding
around an island j: ¢mj

@ Position distr. p(n,t — 00)

@ Overall transmission prob. |t; |2
v
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Abelian quantum walk as multiple scattering of waves

C.A. Miiller and D. Delande, Disorder and interference: localization phenomena,
arXiv:1005.0915v2

@ Assume p =% (N >2),0,€{0,%,...,(N—1)%} uniformly distributed

@ Transmission amplitude through scatterers 1,..., n expressed recursively:
i0
0 i0p_1 1 i0p— tyn_1€' "1t
tin = ti,n—1€""1 (1 + et et 4 ) ty = it

/
1—rnrlyn71e

@ Statistical averaging: A
((Int1nf?)) = ((In[trn—1[?)) +In[ta* = ((IN[L = rarf , 121 %))

@ Bounds on the localization length: —— 1 — — < ¢, < ——— 1
In(1+|r|N)N —In |¢t]2 In(1—|r|N)N —In |£]|2
0
Transmission exponentially —~ -100
suppressed S -200
o
_ _m (rt'y_ 1 (1 1). — =300
N=8o=3% (11)=5000): E
| -400
1 = 500
2 = s -
exp((In |t ~ e Shoc =
(G le1al?)) o
with 1.412 < &) < 1.477. ) %0 -s00 0 500 1000

S — So
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Non-Abelian model: Ising anyons

3 particle types: 1 (vacuum) , o (anyon) , ¢ (fermion)
fusion rules: o x o =1+¢Y ,oxv =0, xXx0v=1,1xa=a

o (o) o o
’ Y > ; | \w/ > E"Hgg,-on— topological Hilbert space

1

1 (6)
, eH

fusion
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Non-Abelian model: Ising anyons

3 particle types: 1 (vacuum) , o (anyon) , ¢ (fermion)
fusion rules: o x o =1+¢Y ,oxv =0, xXx0v=1,1xa=a

(0} [0
’ Y Y fus,on — topological Hilbert space
1

6
> € 7-tfcuzion

=B | ¢ ”
T

unitary representation of the

braid group

(— quantum computation schemes)
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Non-Abelian model: Ising anyons

o {bs} are unitary matrices (representation of the braid group)

o dim Hssion grows exponentially in the number of anyons

@ tryzy = %ﬁﬁ‘_m), (L37)(.)... Kauffman bracket of a link Lzz
Lz

Ising anyons: g =i, d = /2 NN

N ls
= trYz = [["s=1 (=) 2 ™300, mod 2

So

d\
A

2

ms>0 =

_1\mgmu7(s’,s") S

X H1§5/<s“§n( 1) s ’ 8

$2]

£

Ls ... linking numbers between the walker's _§.

component and “static’ components S
7(s’,s") ... Milnor triple component invariant A\
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Non-Abelian model: Ising anyons

Uniform filling mg =1, Vs Random filling

n
tr¥ss = [1o=1 00,6, mod 2 .o
s'.s
x ngs’<s“§n(_1)‘r

n
((trYs3)) = Tz | [ 0.0.(5,2) mod 8

o2(t) ~ t... diffusive propagation s—1
L. Lehman, V. Zatloukal, G. K. Brennen, J.
K. Pachos, and Z. Wang, PRL 106, Ti = L Z H (_1)mr""s7'(5,75”)
aa 2[1
230404 (2011) ] Ae DY 1<si <<
25 ~ {((o?(t))) ~ t... diffusive
UA* . )
20 UnA Entanglement with fusion degrees of
2 15 . L . R freedom
S;’ . Lt + — decoherence, interference effects
£ 10 . % T % % ] 1 suppressed
5 . if — diffusive propagation
GO : 5 10 15 20
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Continuous-time anyonic quantum walk

To allow for longer time simulations,

Hubbard model for anyons on a ladder

. S S o S S > [0)
@ @ @ @ @ @
) !} @ 2 > )

Hamiltonian:
225 lls+1)(s| ®10){0] ® bs + [s 4+ 1)(s| @ [1){1] @ bs + h.c.] +|0)(1] + |1){0]
hopping with braiding coin flip

Numerical studies: real time evolution of anyonic Matrix Product States

(“Time-Evolving Block Decimation” algorithm)
S. Singh, R.N.C. Pfeifer, G. Vidal, and G.K. Brennen, PRB 89, 075112 (2014)
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Continuous-time anyonic quantum walk

n = 100 anyons
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Non-Abelian Ising anyons do not localize in the presence of random
topological environment!
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Summary of results and the moral
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By purely statistical interactions, random topological environment localizes
Abelian anyons but not non-Abelian anyons.
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Thank you for your attention.
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