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Consider a non-relativistic mechanical system with Hamiltonian Hy(x, p):

Canonical equations of motion:

dx Oty dp_ M "
dt op = dt  0Ox
Hamilton-Jacobi equation: S(x, t)
oS oS
E + HO(X7 a) =0 (2)

Quantization & Schrédinger equation: p — —ih0/0x

0 ., 0
—/hE + Ho(x, —/h&) P(x,t) =0
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Our goal: Hamiltonian formulation of field theory

Today’s presentation: Classical field theory
(generalized: momentum, canonical equations, Hamilton-Jacobi theory)
[V. Zatloukal, arXiv:1504.08344 (2015), arXiv:1602.00468 (2016)]

Discussion: Quantization
(generalized: momentum operator, wavefunctions, Schrodinger equation)
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utline

Geometric algebra formalism

Partial observables and Relativistic configuration space

@ Variational principle with Hamiltonian constraint
@ Canonical equations of motion

@ Local Hamilton-Jacobi theory
°

Symmetries and Hamiltonian Noether theorem

@ Examples:

o Non-relativistic Hamiltonian mechanics
o Scalar field theory
o String theory

Discussion: Quantization
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Geometric algebra formalism

We use the mathematical formalism of geometric algebra and calculus:
[D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, (1987)]

See also [C. Doran and A. Lasenby, Geometric Algebra for Physicists, (2007)]
(&< Clifford algebra, Dirac algebra of y-matrices)

Geometric product: a, b ... vectors in an n-dim. vector space

ab=a-b+aNb (4)
— associative, invertible, non-commutative

(+) inner product (grade-lowering)

(A) outer product (grade-raising)
— non-associative, a-b=b-a

— associative, aAb=—bAa
a -
a N /: :0,1 Naz = )
—_—

Vectors aj,...,ap —  multivector a; A ... A ap of grade D.
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Geometric algebra formalism

Generic multivector A: a sum of terms with various grades
Geometric algebra G ... space of A's endowed with the geometric product

Orthonormal basis {ej} (& - ex = 0j)

— G=span{ 1 ., e , €e ,..., €1...€n } , € =€ ...€
~—~ J J \ , J1 JD
scalar yectors pivectors pseudoscalar

(5)
Reversion: AB=BA , 3=a — Ap=(-1)P(O-D/24,
Magnitude: |A| := \/(AA) , (...)...scalar part

Priority: a-AB=(a-A)B , aNAB=(aNA)B

Differential forms: D-vector A — scalar function «

a(by,...,bp):=A-(bi A...Abp) (6)
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Geometric calculus formalism

g € manifold C (Euclidean space)

Vector derivative: a-Jq ... derivative in direction a

N+D
0qF(q) = Y ¢lej-0q)F(a) = 0q-F + 94 NF (7)
=1 —~ N~——
divergence curl
Leibniz rule: 9,(FG) = 0,FG + 04FG
Transformation ¢’ = f(q):
differential outermorphism:
flaiq)=a-94f(q) , f(AAB)=£(A)NE(B) (8)
adjoint:
f(biq) =0qf(q)-b — b-f(a)=1(b)-a (9)
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Geometric calculus formalism

Integration: v C C

/F(q) dl'(q) G(q) := lim ZF(q,-) ATl (gi) G(qi) (10)

n—o0

Fundamental theorem of geometric calculus: (generalized Stokes theorem)

/Fdr-éqc': Fdx G (11)
¥ Oy
Multivector derivative: A, P ... D-vectors
A OpF(P) = lim TP +eA) = F(P) (12)
e—0 £
OpF(P):= > &les-dp)F(P) (13)
|J|=D
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Partial observables and Relativistic configuration space

Relativistic formalism:

Curves v = {q = (t,x) | f(t,x) = 0}
Hamiltonian constraint

H(q, p) = pt + Ho(x,p) =0

Non-relativistic mechanics:
Hamiltonian Hp(x, p)
Trajectories are functions x(t)

X X

(0 p= (pt,P)

Relativistic formalism is more compact, symmetric, and allows to
describe both non-relativistic and relativistic mechanical systems
(e.g., free relativistic particle: H = p,p" — m?).
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Partial observables and Relativistic configuration space

Field theory: functions ¢?(x*) — surfaces v = {q = (x*, ¢?) | f(x, ¢) = 0}

¢a

Following [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004), Ch. 3]

t,X, ¢ ... partial observables
C ={q} ... configuration space — N + D-dimensional, Euclidean
~v C C ... motions — D-dim., correlations among partial observables
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Variational principle with Hamiltonian constraint

dl ... oriented surface element of ~
P ... multivector of grade D
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Variational principle with Hamiltonian constraint

Variational principle
A surface v, with boundary 0. is a physical motion, if the couple
(Yel, Pe1) extremizes the (action) functional

Aly, P] = / P(q) - dT(q) (14)
9l

in the class of pairs (v, P), for which v = 071, and P defined along ~y
satisfies the Hamiltonian constraint

H(q,P(q))=0 Vqen. (15)

(cf. Ch. 3.3.2 in [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004)])

Non-relativistic mechanics ... H = p-e: + Ho(q, px)
Scalar field theory ... H=P - I, + %Z;V:l (/X (P ea))2 + V()
String theory ... H = 3(|P|> — A?)
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Canonical equations of motion

Extended action:

Ay, PN = / [P(q) - dT(q) — A(a)H(g. P(a))] (16)

Lagrange multiplier A\(q) — infinitesimal (A ~ |dl])
Variation with respect to ~, P, A yields:

(see [V. Zatloukal, arXiv:1504.08344 (2015)] for detailed derivation)
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Canonical equations of motion

Canonical equations of motion

Physical motions 7. are obtained by solving the system of equations

XdpH(q, P) = dr, (17a)

(—1)PAdGH(G, Py = { I %P orD=L g
(dl-90q)-P  for D > 1,

H(g,P) = 0. (17¢)

(17a) “Velocity-momentum” relation
(17b) “Force = Change in momentum”
(17¢) Hamiltonian constraint
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Local Hamilton-Jacobi theory

Suppose P(q) = dq A S(q) on an open subset of C, for a D — 1-vector S

IF (see Eq. (17¢))

Local Hamilton-Jacobi equation

H(q,04 A S) =0, (18)

AND (see Eq. (17a))
ANOpH(q,04 N S) = dT, (19)
THEN

the second canonical equation (17b) is fulfilled automatically.
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Local Hamilton-Jacobi theory

If we find a family of solutions S(g; @), where « is a continuous
parameter, by differentiation d, we obtain:

D = 1: Constant of motion

dl - 0(0.5) =0 = 9.S(q:0) =5 Vg€ a, (20)

With N independent parameters ay, ..., ap, we determine 7, from
implicit equations (20). (Note: C ~ RN+1)

D > 1: Continuity equation

(dT-0) - (0aS) =0 = [(dF-84) (0aS) = [dE-(8.5)=0 (21)

'7(:1 8’7(:1

where 7, is in general a subset of 7.
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Symmetries and Hamiltonian Noether theorem

Transformation ¢’ = f(q):
v ={flalqer} . dr'(d)=£(dM(q):q) , P =F"1(Piq) (22)

= A[,P1= Ay, P] (23)

f is a symmetry if: H(q', P") = H(q, P)
(Then classical motions are mapped to classical motions.)
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Symmetries and Hamiltonian Noether theorem

Infinitesimal symmetry f(q) = g +cv(q):
v 0gH(g, P) = (9g A (v - P)) - OpH(q, P) = 0 (24)

@ Canonical equations =

Conservation law

) dl - 0g(P - v) for D=1
| (@dr-8y) - (P-v) forD>1

(25)
Integral form:

P(@2) vias) = Plar) - ()  tesp. /6 T (P-v)=0 (26)
Vel

v

P - v ... conserved multivector of grade D — 1 (~ Noether current)
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Example 1: Non-relativistic Hamiltonian mechanics

Consider D = 1, split C = time @ space (¢ = t + x), and take

Hnr(g,p) = p- e + Ho(q, px), (27)

Ho ... non-relativistic Hamiltonian,
Px - .. spatial part of p.

C~ RI+N

v={g=t+x(t)[t espanfe:}} , p(t) =p(t+x(t))  (28)
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Example 1: Non-relativistic Hamiltonian mechanics

Canonical egs. (17) = Hamilton's canonical equations:

(S (9t X = apx HO s €t - 81- Px = —3XH0 (29)

Hamilton-Jacobi equation: (S5(q) is scalar function)

Hir(. 05S) = et - 9:5 + Ho(d,0,5) = 0 (30)

Constants of motion:
1) p- et = —Hp ... symmetry generator v = e; [condition e; - JqHp = 0]

2) Py Vx oo V=(X)  [virOxHo — (3X\7X-px)-8pH0 = {Ho, px-vx} = 0]
————

Poisson bracket
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Example 2: Scalar field theory

Consider D > 1, split C = spacetime @ field space (g = x + y), and take
Hpw ... De Donder-Weyl Hamiltonian, satisfying

Iy - OpHpw =0 (eb N ea) -OpHpw = 0. (32)
({es}V_, ... orthonormal basis of the field space)
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Example 2: Scalar field theory

T={a=x+y(x)|xeQ} , P(x)=Plx+y(x)) (33)

Canonical egs. (17) = De Donder-Weyl equations:
Oxy = /;1apHDW , (ea/xax) -P = (—l)Dea . 8yHDW (34)

(cf. [I. V. Kanatchikov, Rep. Math. Phys. 41, 49 (1998)])

Hamilton-Jacobi equation:
Iy - (aq/\S)—i-HD\/V(q,aq/\S) =0 (35)

For S(q) = s(q) - I;* = Weyl's eq. [H. Kastrup, Phys. Rep. 101, 1-167 (1983)].
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Example 2: Scalar field theory

Scalar field Hamiltonian:

N
Hsr (. P) = 2 (P )+ V(y) (36)
=1

First canonical eq. (17a) = Action, Eq. (16), reads

Asr = [ {P-1dX + (X 0.) A y] = [dX e} = [ Lsr(62,0.6,)dX]

(37)
where ¢, = e, - y, and the Lagrangian
T
Lsr(¢ay 0xta) = 5 > (9xta)’ = V() (38)
2 a=1

(N-component real scalar field theory)
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Example 2: Scalar field theory

v(x) = v(x + y(x))
Conservation law

(dlr-0q)-(P-v)=0 (39)

= Continuity equation
O j(x) =0 (40)

Noether current

J) = =k [Pyt B A (7 (P-v))] (41)
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Example 2: Scalar field theory symmetries

Vtrx UrotX
Y y
_— /
—_ Z |
— T2 — T
B. /
€ xy1
—— —

1) Translations in spacetime: v;x(q) = vx — energy-momentum tensor

Jux (X; vi) = —wLsF + Zglzl(‘/x ' X¢3)8?(§X25Fa (42)

2) Rotations in spacetime: viotx(q) = (¢ — x0) - Bx — angular momentum

_jrotX(X; BX,XO) :jtr (X; (X - XO) : BX) (43)

3) Rotations in field space: woty(q) =q - By
Jroty (X; By) = Zgbzl(ea A ep) - B, $a0xPp (44)
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Example 3: String theory

C ... target space (Euclidean), dim. N+ D
v ... world-sheet, dim. D

Hamiltonian:
1
Hsi (P) = 5(;P\z—/\?) (45)

where [P2= P P.

Canonical Egs. (17) imply:
di = AP, |dl| =|AIA

I, =dl'/|dl'| = +P/A ... unit pseudoscalar of
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Example 3: String theory

D = 1: Relativistic particle

ly-0q1, =0 (46)
D > 1: String or membrane
(b 9q)- =0 (47)
Hamilton-Jacobi equation:
|0g ANS|=A (48)
Symmetries:
v(q) = v +q- Bo (49)

(translations in direction vy @ rotations in plane By)

Conserved quantities: P-v = i/\/N7 -V
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Example 3: String theory

Nambu-Goto action:

1
ASt,:/P-dF:/|dF|2:iA/|dF| (50)
Y )\ Y

Y

— el is @ minimal surface (mean curvature vanishes)

Scalar field limit: worldsheet flattening

y={g=x+y(x)|xeQ} , dl=dX+(dX -0x) Ay (51)

Aser = £ NAsp|v=o + /\/Q\dX| (52)

String theory — Potential-free massless scalar field theory.
(cf. Relativistic free particle — Non-relativistic free particle)
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Example 3: Relativistic particle — classical motions

(D=1)

Integrating (|dl'|-multiple of) Eq. (46) along ~ from qo to g, and applying
the Fundamental theorem of geometric calculus,

0= ["dr-out, = 1) - b (o) (53)
q

0

= |, is constant along a classical motion
= 7 are straight lines in C:

Yo={g=wr+qo |7 € R} (54)

(go € C and w is an arbitrary constant vector.)
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Summary of results

@ We have seen how field theory can be formulated using Hamiltonian
constraint between partial observables and generalized momentum:
A= [ P-dl . H(qP)=0

@ Canonical equations of motion:
ANOpH(q,P)=dl |, (=1)PXJgH(q,P) = (dT - 9)- P

@ Local Hamilton-Jacobi equation:
H(g,04A5)=0

@ Field-theoretic Hamiltonian Noether theorem:
(dr-9q)-(P-v)=0

@ Three examples provided:
Non-relativistic mechanics, Scalar field theory, String theory
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Discussion: Symmetry between spacetime and field space

Hamiltonian constraint formulation of mechanics — double significance:

1) formal: More general than non-relativistic Hamiltonian mechanics.
Equations take compact and symmetric form (e.g., Hamilton-Jacobi eq.).

2) physical: Allows to formulate special relativity — a physical theory of
utmost importance.
Hamiltonian constraint formulation of field theory:

— 1) General framework for various theories (e.g., scalar field, string
theory). Provides insights, and neatly derives relevant equations.

— 2) Should the field and the spacetime coordinates be put on the same
footing? (In gravity, the spacetime is dynamical — a kind of field?)
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Discussion: Quantization — path integral

Mechanics (D = 1):
_ 7 £ [2 p-dq
0(0) = (alax) = | DaDpet InP“sH(q. p) (55)
%

— differential equation:

a6(g>):0

¥(q) = 6(H(q, —ihdq))1(q)

Schrodinger eq. for H = Hyg (Eq. 27)
Klein-Gordon eq. for H = Hs;, (Eq. 45)

H(q. ~ihdg)(q) =0 (56)

Field theory (D > 1): 9[07] ... functional of the boundary
wor]= [ DypPet L P hihi(q, P) (57)
Oy fixed

— functional differential equation: (?7)
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Discussion: Quantization — “canonical”

Mechanics: Hamilton-Jacobi eq. — Schrodinger eq.

H(q,945(q)) =0 — H(g,—ihdq)¥(q) =0 (58)

classical momentum — quantum operator

p = p=—ihd, (59)
Field theory:
Local Hamilton-Jacobi eq. (18) — partial differential equation

H(q, 947 5(q)) =0 — (7) (60)

classical momentum D-vector — quantum operator
P - P=() (61)

(Hints in [I. V. Kanatchikov, arXiv:1312.4518 (2013)])
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Thank you for your attention.
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