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Motivation

Consider a non-relativistic mechanical system with Hamiltonian H0(x,p):

Canonical equations of motion:

dx

dt
=
∂H0

∂p
,

dp

dt
= −∂H0

∂x
(1)

Hamilton-Jacobi equation: S(x, t)

∂S

∂t
+ H0(x,

∂S

∂x
) = 0 (2)

Quantization & Schrödinger equation: p→ −i~ ∂/∂x[
−i~ ∂

∂t
+ H0(x,−i~ ∂

∂x
)

]
ψ(x, t) = 0 (3)
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Motivation

Our goal: Hamiltonian formulation of field theory

Today: Classical field theory
(generalized: momentum, canonical equations, Hamilton-Jacobi)
[V. Zatloukal, Classical field theories from Hamiltonian constraint: Canonical

equations of motion and local Hamilton-Jacobi theory, arXiv:1504.08344 (2015)]

Someday: Quantization
(generalized: momentum operator, wavefunctions, Schrödinger equation)
See the proposal [I. V. Kanatchikov, arXiv:1312.4518 (2013)]
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Outline

Partial observables and Relativistic configuration space

Variational principle with Hamiltonian constraint

Canonical equations of motion

Local Hamilton-Jacobi theory

Examples:

Non-relativistic Hamiltonian mechanics
Scalar field theory
String theory
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Partial observables and Relativistic configuration space

Non-relativistic mechanics:
Hamiltonian H0(x,p)
Trajectories are functions x(t)

Relativistic formalism:
Curves γ = {q = (t, x) | f (t, x) = 0)}
Hamiltonian constraint
H(q, p) = pt + H0(x,p) = 0

t

x

γ

p = (pt,p)

(t,x) = q
b

t

x
x(t)

Relativistic formalism is more compact, symmetric, and allows to
describe both non-relativistic and relativistic mechanical systems

(e.g., free relativistic particle: H = pµp
µ −m2).
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Partial observables and Relativistic configuration space

Field theory: functions φa(xµ) → surfaces γ = {q = (xµ, φa) | f (x , φ) = 0}

x0

φa

x1

φa(xµ)

x0

φa

x1

γ
b

(xµ, φa) = q

P

Following [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004), Ch. 3]

t, x, φ . . . partial observables
C = {q} . . . configuration space – N + D-dimensional, Euclidean
γ ⊂ C . . . motions – D-dim., correlations among partial observables
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Mathematical formalism

We use the mathematical formalism of geometric algebra and calculus:
[D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, (1987)]

See also [C. Doran and A. Lasenby, Geometric Algebra for Physicists, (2007)]

A · B . . . inner product

A ∧ B . . . outer product

∂q ≡
∑N+D

j=1 ej ej · ∂q . . . vector derivative (with respect to point in C)
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Variational principle with Hamiltonian constraint

dΓ . . . oriented surface element of γ
P . . . multivector of grade D

Variational principle

A surface γcl with boundary ∂γcl is a physical motion, if the couple
(γcl,Pcl) extremizes the (action) functional

A[γ,P] =

∫
γ
P(q) · dΓ(q) (4)

in the class of pairs (γ,P), for which ∂γ = ∂γcl, and P defined along γ
satisfies the Hamiltonian constraint

H(q,P(q)) = 0 ∀q ∈ γ. (5)

cf. Ch. 3.3.2 in [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004)]
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Variational principle with Hamiltonian constraint

γ

γ′

∂γ = ∂γ′

Iγ

dΓ

q

P

dΓ′

P ′

q′

f

dΣ

b

b

C ≃ RD+N

Figure: Variational principle.
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Canonical equations of motion

A[γ,P, λ] =

∫
γ

[P(q) · dΓ(q)− λ(q)H(q,P(q))] (6)

Lagrange multiplier λ(q) – infinitesimal (λ ∼ |dΓ|)

Variation with respect to γ,P, λ yields:

(see [V. Zatloukal, arXiv:1504.08344 (2015)] for detailed derivation)
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Canonical equations of motion

Canonical equations of motion

Physical motions γcl are obtained by solving the system of equations

λ∂PH(q,P) = dΓ, (7a)

(−1)Dλ ∂̇qH(q̇,P) =

{
dΓ · ∂qP for D = 1

(dΓ · ∂q) · P for D > 1,
(7b)

H(q,P) = 0. (7c)

(7a) “Velocity–momentum” relation
(7b) “Force = Change in momentum”
(7c) Hamiltonian constraint
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Local Hamilton-Jacobi theory

Suppose P(q) = ∂q ∧ S(q) on an open subset of C, for a (D − 1)-vector S

IF (see Eq. (7c))

Local Hamilton-Jacobi equation

H(q, ∂q ∧ S) = 0, (8)

AND (see Eq. (7a))

λ∂PH(q, ∂q ∧ S) = dΓ, (9)

THEN

the second canonical equation (7b) is fulfilled automatically.
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Local Hamilton-Jacobi theory

If we find a family of solutions S(q;α), where α is a continuous
parameter, by differentiation ∂α we obtain:

D = 1: Constant of motion

dΓ · ∂q(∂αS) = 0 ⇒ ∂αS(q;α) = β ∀q ∈ γcl, (10)

With N independent parameters α1, . . . , αN , we determine γcl from
implicit equations (10). (Note: C ' RN+1)

D > 1: Continuity equation

(dΓ · ∂q) · (∂αS) = 0 ⇒
∫
γ̄cl

(dΓ · ∂q) · (∂αS) =

∫
∂γ̄cl

dΣ · (∂αS) = 0 (11)

where γ̄cl is in general a subset of γcl.

V. Zatloukal (CTU in Prague) Classical field theories from Hamiltonian constraintAGACSE 2015, Barcelona 13 / 23



Example 1: Non-relativistic Hamiltonian mechanics

Consider D = 1, and take

H(q,P) = P · et + H0(q,P), (12)

where et · ∂PH0 = 0, H0 . . . non-relativistic Hamiltonian.

b

b

b

et

t

dt

dΓ = g(dt)x
g(t) = q

γ

δx

δt

g

P (q)

p(t)

C ≃ R1+N

γcl = {q = g(t) = t + x(t) | t ∈ span{et} ' R} (13)
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Example 1: Non-relativistic Hamiltonian mechanics

Denote p(t) ≡ P(g(t)). Canonical equations (7) reduce to

Hamilton’s canonical equations:

et · ∂tx = ∂pH0(q, p) , et · ∂t ex · p = −ex · ∂qH0(q, p) (14)

and Energy conservation law:

et · ∂tH0(q(t), p(t)) = et · ∂qH0(q, p(t))|q=g(t) = 0 (15)

(assuming H0 does not depend on time t explicitly.)

Hamilton-Jacobi equation: (S(q) is scalar function)

H(q, ∂qS) = et · ∂qS + H0(q, ∂qS) = 0 (16)
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Example 2: Scalar field theory

Consider D > 1,N = 1, and take

H(q,P) = P · Ix + HDW (q,P), (17)

where Ix · ∂PHDW = 0, HDW . . . De Donder-Weyl Hamiltonian.

b

b

b

Ix

dX

x

q

eyφ = y

γ
dΓ = g(dX)

P (q)

P (x)

δy

δx
ey

e1

eDE1

ED
g

C ≃ RD+1

γcl = {q = g(x) = x + y(x) | x ∈ span{e1, . . . , eD} ' RD}. (18)
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Example 2: Scalar field theory

Denote P(x) ≡ P(g(x)), Ej ≡ Ixejey , Ẽj . . . reversion of Ej .
Canonical equations (7) reduce to

De Donder-Weyl equations:

ej · ∂x ey · y = Ẽj · ∂PHDW , ej · ∂xEj · P = −ey · ∂qHDW (19)

and Continuity equation for the energy-momentum tensor:

ek · ∂xTjk = 0 (20)

(assuming HDW does not depend on x explicitly.)

In particular, for HDW = 1
2

∑D
j=1(P · Ej)

2 + V (φ), Eqs. (19) simplify,

∂2
xφ = −∂φV (φ) , φ ≡ ey · y , (21)

and Tjk = −δjkL(φ, ∂xφ) + (ej · ∂xφ)(ek · ∂xφ), where L= 1
2 (∂xφ)2−V (φ) .
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Example 2: Scalar field theory

Hamilton-Jacobi equation:

Ix · (∂q ∧ S) + HDW (q, ∂q ∧ S) = 0 (22)

In particular, for HDW specified above, and a vector s(q) ≡ S(q) · Ix ,

∂q · s +
1

2
(ey · ∂q s)2 + V (φ) = 0. (23)

Coincides with Hamilton-Jacobi equation of Weyl.
(See e.g. [H. Kastrup, Phys. Rep. 101 (1983), 1-167])
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Example 3: String theory

C = target space (Euclidean): dim = N + D
γ = world-sheet: dim = D

Consider the Hamiltonian

H(P) =
1

2
(|P|2 − Λ2),

where |P|2 ≡ P̃ · P.

Canonical Eqs. (7) imply:

dΓ = λP̃ , |dΓ| = |λ|Λ

P = ±Λ Iγ

γ
C

Iγ ≡ dΓ/|dΓ| = ±P/Λ . . . unit pseudoscalar of γ
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Example 3: String theory

Nambu-Goto action:∫
γ
P · dΓ =

∫
γ

1

λ
|dΓ|2 = ±Λ

∫
γ
|dΓ|, (24)

→ γcl is a minimal surface (mean curvature vanishes)

D = 1: Relativistic particle

Iγ · ∂q Iγ = 0 (25)

D > 1: String or membrane

(Iγ · ∂q) · Iγ = 0 (26)

Hamilton-Jacobi equation:

|∂q ∧ S | = Λ (27)
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Example 3: Relativistic particle – physical motions

Integrating (|dΓ|-multiple of) Eq. (25) along γ from q0 to q, and applying
the Fundamental theorem of geometric calculus,

0 =

∫ q

q0

dΓ · ∂qIγ = Iγ(q)− Iγ(q0) (28)

⇒ Iγ is constant along a physical motion
⇒ γcl are straight lines in C:

γcl = {q = vτ + q0 | τ ∈ R} (29)

(q0 ∈ C and v is arbitrary constant vector.)
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Summary

We showed how field theory can be formulated using Hamiltonian
constraint between partial observables and generalized momentum:
A =

∫
γ
P · dΓ , H(q,P) = 0

We derived canonical equations of motion:
λ∂PH(q,P) = dΓ , (−1)Dλ ∂̇qH(q̇,P) = (dΓ · ∂q) · P

and Hamilton-Jacobi equation:
H(q, ∂q ∧ S) = 0

Scalar field theory and string theory formulated in a common
framework.
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Thank you for your attention.
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