Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory

Václav Zatloukal

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

and

Max Planck Institute for the History of Science, Berlin

AGACSE 2015, Barcelona

Motivation

Consider a non-relativistic mechanical system with Hamiltonian $H_0(\mathbf{x}, \mathbf{p})$:

Canonical equations of motion:

$$\frac{d\mathbf{x}}{dt} = \frac{\partial H_0}{\partial \mathbf{p}} \quad , \quad \frac{d\mathbf{p}}{dt} = -\frac{\partial H_0}{\partial \mathbf{x}} \tag{1}$$

Hamilton-Jacobi equation: $S(\mathbf{x}, t)$

$$\frac{\partial S}{\partial t} + H_0(\mathbf{x}, \frac{\partial S}{\partial \mathbf{x}}) = 0$$
⁽²⁾

Quantization & Schrödinger equation: $\mathbf{p} \rightarrow -i\hbar \partial/\partial \mathbf{x}$

$$\left[-i\hbar\frac{\partial}{\partial t} + H_0(\mathbf{x}, -i\hbar\frac{\partial}{\partial \mathbf{x}})\right]\psi(\mathbf{x}, t) = 0$$
(3)

Our goal: Hamiltonian formulation of field theory

Today: Classical field theory (generalized: momentum, canonical equations, Hamilton-Jacobi) [V. Zatloukal, *Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory*, arXiv:1504.08344 (2015)]

Someday: Quantization

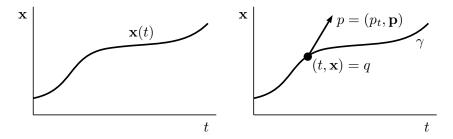
(generalized: momentum operator, wavefunctions, Schrödinger equation) See the proposal [I. V. Kanatchikov, arXiv:1312.4518 (2013)]

- Partial observables and Relativistic configuration space
- Variational principle with Hamiltonian constraint
- Canonical equations of motion
- Local Hamilton-Jacobi theory
- Examples:
 - Non-relativistic Hamiltonian mechanics
 - Scalar field theory
 - String theory

Partial observables and Relativistic configuration space

Non-relativistic mechanics: Hamiltonian $H_0(\mathbf{x}, \mathbf{p})$ Trajectories are functions $\mathbf{x}(t)$ Relativistic formalism:

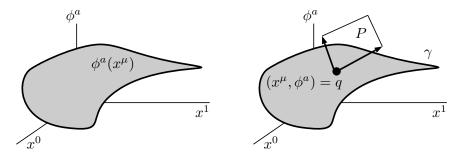
Curves $\gamma = \{q = (t, \mathbf{x}) | f(t, \mathbf{x}) = 0\}$ Hamiltonian constraint $H(q, p) = p_t + H_0(\mathbf{x}, \mathbf{p}) = 0$



Relativistic formalism is more compact, symmetric, and allows to describe both non-relativistic and relativistic mechanical systems (e.g., free relativistic particle: $H = p_{\mu}p^{\mu} - m^2$).

Partial observables and Relativistic configuration space

Field theory: functions $\phi^a(x^{\mu}) \rightarrow \text{surfaces } \gamma = \{q = (x^{\mu}, \phi^a) \mid f(x, \phi) = 0\}$



Following [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004), Ch. 3]

 $t, \mathbf{x}, \phi \dots$ partial observables $\mathcal{C} = \{q\} \dots$ configuration space -N + D-dimensional, Euclidean $\gamma \subset \mathcal{C} \dots$ motions -D-dim., correlations among partial observables We use the mathematical formalism of **geometric algebra and calculus**: [D. Hestenes and G. Sobczyk, *Clifford Algebra to Geometric Calculus*, (1987)] See also [C. Doran and A. Lasenby, *Geometric Algebra for Physicists*, (2007)]

 $A \cdot B \ldots$ inner product

 $A \land B$... outer product

 $\partial_q \equiv \sum_{j=1}^{N+D} e_j e_j \cdot \partial_q \dots$ vector derivative (with respect to point in C)

Variational principle with Hamiltonian constraint

 $d\Gamma$... oriented surface element of γ *P* ... multivector of grade *D*

Variational principle

A surface γ_{cl} with boundary $\partial \gamma_{cl}$ is a physical motion, if the couple (γ_{cl}, P_{cl}) extremizes the (action) functional

$$\mathcal{A}[\gamma, P] = \int_{\gamma} P(q) \cdot d\Gamma(q)$$
 (4

in the class of pairs (γ , P), for which $\partial \gamma = \partial \gamma_{cl}$, and P defined along γ satisfies the Hamiltonian constraint

$$H(q, P(q)) = 0 \qquad \forall q \in \gamma.$$
(5)

cf. Ch. 3.3.2 in [C. Rovelli, Quantum Gravity, Cambridge Univ. Press (2004)]

Variational principle with Hamiltonian constraint

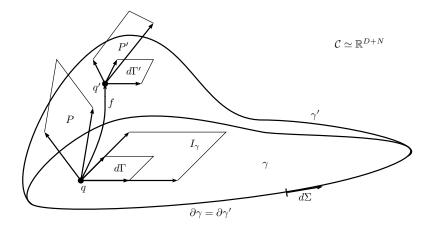


Figure: Variational principle.

$$\mathcal{A}[\gamma, P, \lambda] = \int_{\gamma} \left[P(q) \cdot d\Gamma(q) - \lambda(q) H(q, P(q)) \right]$$
(6)

Lagrange multiplier $\lambda(q)$ – infinitesimal ($\lambda \sim |d\Gamma|$)

Variation with respect to γ , P, λ yields:

(see [V. Zatloukal, arXiv:1504.08344 (2015)] for detailed derivation)

Canonical equations of motion

Physical motions $\gamma_{\rm cl}$ are obtained by solving the system of equations

$$\lambda \,\partial_P H(q, P) = d\Gamma,$$
 (7a)

$$(-1)^{D}\lambda \dot{\partial}_{q} H(\dot{q}, P) = \begin{cases} d\Gamma \cdot \partial_{q} P & \text{for } D = 1\\ (d\Gamma \cdot \partial_{q}) \cdot P & \text{for } D > 1, \end{cases}$$
(7b)
$$H(q, P) = 0.$$
(7c)

(7a) "Velocity-momentum" relation(7b) "Force = Change in momentum"(7c) Hamiltonian constraint

Local Hamilton-Jacobi theory

Suppose $P(q) = \partial_q \wedge S(q)$ on an open subset of C, for a (D-1)-vector S

IF (see Eq. (7c))

Local Hamilton-Jacobi equation

 $H(q,\partial_q\wedge S)=0,$

AND (see Eq. (7a))

 $\lambda \,\partial_P H(q, \partial_q \wedge S) = d\Gamma, \tag{9}$

(8)

THEN

the second canonical equation (7b) is fulfilled automatically.

Local Hamilton-Jacobi theory

If we find a family of solutions $S(q; \alpha)$, where α is a continuous parameter, by differentiation ∂_{α} we obtain:

D = 1: Constant of motion

$$d\Gamma \cdot \partial_{\boldsymbol{q}}(\partial_{\alpha}S) = 0 \quad \Rightarrow \quad \partial_{\alpha}S(\boldsymbol{q};\alpha) = \beta \qquad \forall \boldsymbol{q} \in \gamma_{\mathrm{cl}}, \tag{10}$$

With N independent parameters $\alpha_1, \ldots, \alpha_N$, we determine γ_{cl} from implicit equations (10). (Note: $\mathcal{C} \simeq \mathbb{R}^{N+1}$)

D > 1: Continuity equation

$$(d\Gamma \cdot \partial_q) \cdot (\partial_\alpha S) = 0 \quad \Rightarrow \quad \int_{\bar{\gamma}_{\rm cl}} (d\Gamma \cdot \partial_q) \cdot (\partial_\alpha S) = \int_{\partial \bar{\gamma}_{\rm cl}} d\Sigma \cdot (\partial_\alpha S) = 0 \quad (11)$$

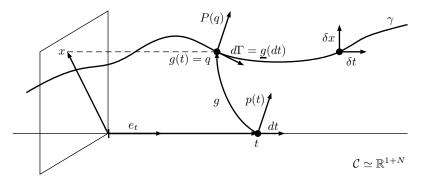
where $\bar{\gamma}_{cl}$ is in general a subset of γ_{cl} .

Example 1: Non-relativistic Hamiltonian mechanics

Consider D = 1, and take

$$H(q, P) = P \cdot e_t + H_0(q, P), \tag{12}$$

where $e_t \cdot \partial_P H_0 = 0$, $H_0 \dots$ non-relativistic Hamiltonian.



 $\gamma_{\rm cl} = \{ q = g(t) = t + x(t) \mid t \in \operatorname{span}\{e_t\} \simeq \mathbb{R} \}$ (13)

Example 1: Non-relativistic Hamiltonian mechanics

Denote $p(t) \equiv P(g(t))$. Canonical equations (7) reduce to

Hamilton's canonical equations:

 $e_t \cdot \partial_t x = \partial_p H_0(q, p)$, $e_t \cdot \partial_t e_x \cdot p = -e_x \cdot \partial_q H_0(q, p)$ (14)

and Energy conservation law:

 $e_t \cdot \partial_t H_0(q(t), p(t)) = e_t \cdot \partial_q H_0(q, p(t))|_{q=g(t)} = 0$ (15)

(assuming H_0 does not depend on time t explicitly.)

Hamilton-Jacobi equation: (S(q)) is scalar function)

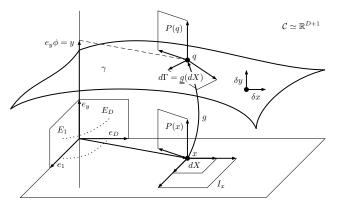
$$H(q,\partial_q S) = e_t \cdot \partial_q S + H_0(q,\partial_q S) = 0$$
(16)

Example 2: Scalar field theory

Consider D > 1, N = 1, and take

$$H(q, P) = P \cdot I_x + H_{DW}(q, P), \qquad (17)$$

where $I_x \cdot \partial_P H_{DW} = 0$, H_{DW} ... De Donder-Weyl Hamiltonian.



 $\gamma_{\rm cl} = \{ \boldsymbol{q} = \boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{x} + \boldsymbol{y}(\boldsymbol{x}) \, | \, \boldsymbol{x} \in \operatorname{span}\{\boldsymbol{e}_1, \dots, \boldsymbol{e}_D\} \simeq \mathbb{R}^D \}.$ (18)

Example 2: Scalar field theory

Denote $P(x) \equiv P(g(x))$, $E_j \equiv I_x e_j e_y$, \tilde{E}_j ... reversion of E_j . Canonical equations (7) reduce to

De Donder-Weyl equations:

$$e_{j} \cdot \partial_{x} e_{y} \cdot y = \widetilde{E}_{j} \cdot \partial_{P} H_{DW} \quad , \quad e_{j} \cdot \partial_{x} E_{j} \cdot P = -e_{y} \cdot \partial_{q} H_{DW}$$
(19)

and Continuity equation for the energy-momentum tensor:

$$\mathbf{e}_k \cdot \partial_x \mathcal{T}_{jk} = \mathbf{0} \tag{20}$$

(assuming H_{DW} does not depend on x explicitly.)

In particular, for $H_{DW} = \frac{1}{2} \sum_{j=1}^{D} (P \cdot E_j)^2 + V(\phi)$, Eqs. (19) simplify,

$$\partial_x^2 \phi = -\partial_\phi V(\phi) \quad , \quad \phi \equiv e_y \cdot y,$$
 (21)

and $\mathcal{T}_{jk} = -\delta_{jk}\mathcal{L}(\phi, \partial_x \phi) + (e_j \cdot \partial_x \phi)(e_k \cdot \partial_x \phi)$, where $\mathcal{L} = \frac{1}{2}(\partial_x \phi)^2 - V(\phi)$.

Hamilton-Jacobi equation:

$$H_{x} \cdot (\partial_{q} \wedge S) + H_{DW}(q, \partial_{q} \wedge S) = 0$$
(22)

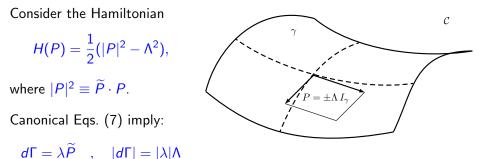
In particular, for H_{DW} specified above, and a vector $s(q) \equiv S(q) \cdot I_x$,

$$\partial_q \cdot s + \frac{1}{2} (e_y \cdot \partial_q s)^2 + V(\phi) = 0.$$
 (23)

Coincides with Hamilton-Jacobi equation of Weyl. (See e.g. [H. Kastrup, Phys. Rep. **101** (1983), 1-167])

Example 3: String theory

C = target space (Euclidean): dim = N + D γ = world-sheet: dim = D



 $I_{\gamma} \equiv d\Gamma/|d\Gamma| = \pm P/\Lambda$... unit pseudoscalar of γ

Example 3: String theory

Nambu-Goto action:

$$\int_{\gamma} P \cdot d\Gamma = \int_{\gamma} \frac{1}{\lambda} |d\Gamma|^2 = \pm \Lambda \int_{\gamma} |d\Gamma|, \qquad (24)$$

 $\rightarrow \gamma_{\rm cl}$ is a *minimal surface* (mean curvature vanishes)

D = 1: Relativistic particle

$$I_{\gamma} \cdot \partial_{q} I_{\gamma} = 0 \tag{25}$$

D > 1: String or membrane

$$(I_{\gamma} \cdot \partial_{q}) \cdot I_{\gamma} = 0 \tag{26}$$

Hamilton-Jacobi equation:

$$|\partial_q \wedge S| = \Lambda \tag{27}$$

Integrating ($|d\Gamma|$ -multiple of) Eq. (25) along γ from q_0 to q, and applying the Fundamental theorem of geometric calculus,

$$0 = \int_{q_0}^{q} d\Gamma \cdot \partial_q I_{\gamma} = I_{\gamma}(q) - I_{\gamma}(q_0)$$
(28)

 $\Rightarrow I_{\gamma} \text{ is constant along a physical motion} \\\Rightarrow \gamma_{cl} \text{ are straight lines in } \mathcal{C}:$

$$\gamma_{\rm cl} = \{ \boldsymbol{q} = \boldsymbol{v}\tau + \boldsymbol{q}_0 \, | \, \tau \in \mathbb{R} \}$$
(29)

 $(q_0 \in C \text{ and } v \text{ is arbitrary constant vector.})$

- We showed how field theory can be formulated using Hamiltonian constraint between partial observables and generalized momentum: $A = \int_{\gamma} P \cdot d\Gamma$, H(q, P) = 0
- We derived canonical equations of motion: $\lambda \partial_P H(q, P) = d\Gamma$, $(-1)^D \lambda \dot{\partial}_q H(\dot{q}, P) = (d\Gamma \cdot \partial_q) \cdot P$
- and Hamilton-Jacobi equation: $H(q, \partial_q \wedge S) = 0$
- Scalar field theory and string theory formulated in a common framework.

Thank you for your attention.