Jordan-Schwinger map in the theory of angular momentum

Václav Zatloukal*
Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague,
Břehová 7, 11519 Praha 1, Czech Republic

(Dated: February 21, 2020)
The Jordan-Schwinger representation of the $\mathrm{su}(2)$ algebra utilizes ladder operators to efficiently handle $\operatorname{su}(2)$ representations with arbitrary spin. In these notes we point out the usefulness of this technique for calculating the Clebsch-Gordan coefficients when two angular momenta are being composed.

I. JORDAN-SCHWINGER REPRESENTATION: GENERIC CASE

Let the $n \times n$ matrices $\mathbb{A}_{1}, \ldots, \mathbb{A}_{N}$ form a representation (typically fundamental) of a Lie algebra \mathfrak{g} :

$$
\begin{equation*}
\left[\mathbb{A}_{i}, \mathbb{A}_{j}\right]=c_{i j}^{k} \mathbb{A}_{k} \tag{1}
\end{equation*}
$$

where $c_{i j}^{k}$ are the structure constants of \mathfrak{g}, and summation over $k=1, \ldots, N$ is implied.
Consider n pairs of creation and annihilation operators $\hat{a}_{1}^{\dagger}, \ldots, \hat{a}_{n}^{\dagger}$ and $\hat{a}_{1}, \ldots, \hat{a}_{n}$ with usual bosonic commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} \quad, \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0 \quad, \quad\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right]=0 \tag{2}
\end{equation*}
$$

Then, the operators

$$
\begin{equation*}
\hat{A}_{i}=\hat{a}_{\alpha}^{\dagger}\left(\mathbb{A}_{i}\right)_{\alpha \beta} \hat{a}_{\beta}, \tag{3}
\end{equation*}
$$

where $\left(\mathbb{A}_{i}\right)_{\alpha \beta}$ is the (α, β)-th entry of the matrix \mathbb{A}_{i}, and summation over $\alpha, \beta=1, \ldots, n$ is implied, form again a representation of the Lie algebra \mathfrak{g}. Indeed,

$$
\begin{align*}
{\left[\hat{A}_{i}, \hat{A}_{j}\right] } & =\left(\mathbb{A}_{i}\right)_{\alpha \beta}\left(\mathbb{A}_{j}\right)_{\gamma \delta}\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right] \\
& \left.=\left(\mathbb{A}_{i}\right)_{\alpha \beta}\left(\mathbb{A}_{j}\right)_{\gamma \delta}\left(\hat{a}_{\alpha}^{\dagger}\left[\hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right] \hat{a}_{\delta}+\hat{a}_{\gamma}^{\dagger} \hat{a}_{\alpha}^{\dagger}, \hat{a}_{\delta}\right] \hat{a}_{\beta}\right) \\
& =\left(\mathbb{A}_{i}\right)_{\alpha \beta}\left(\mathbb{A}_{j}\right)_{\beta \delta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\delta}-\left(\mathbb{A}_{i}\right)_{\alpha \beta}\left(\mathbb{A}_{j}\right)_{\gamma \alpha} \hat{a}_{\gamma}^{\dagger} \hat{a}_{\beta} \\
& =\left(\mathbb{A}_{i} \mathbb{A}_{j}-\mathbb{A}_{j} \mathbb{A}_{i}\right)_{\alpha \delta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\delta} \\
& =c_{i j}^{k}\left(\mathbb{A}_{k}\right)_{\alpha \beta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} \\
& =c_{i j}^{k} \hat{A}_{k} . \tag{4}
\end{align*}
$$

The map $\mathbb{A}_{i} \mapsto \hat{A}_{i}$ from matrices to operators (on an abstract Hilbert space) is referred to as the Jordan-Schwinger map [1].

[^0]
II. JORDAN-SCHWINGER REPRESENTATION: $\mathfrak{s u}(2)$

In particular, we will be concerned with the angular momentum Lie algebra $\mathfrak{s u}(2)$, whose fundamental representation is spanned by the 2×2 matrices $\mathbb{J}_{i}=\frac{\sigma_{i}}{2}, i=1,2,3$, which fulfil the commutation relations

$$
\begin{equation*}
\left[\mathbb{J}_{i}, \mathbb{J}_{j}\right]=i \varepsilon_{i j k} \mathbb{J}_{k} \tag{5}
\end{equation*}
$$

Here σ_{i} denote the standard Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{6}\\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For the case of $\mathfrak{s u}(2)$, the Jordan-Schwinger map yields the following operators:

$$
\begin{align*}
\hat{J}_{1} & =\frac{1}{2}\left(\hat{a}_{2}^{\dagger} \hat{a}_{1}+\hat{a}_{1}^{\dagger} \hat{a}_{2}\right), \\
\hat{J}_{2} & =\frac{i}{2}\left(\hat{a}_{2}^{\dagger} \hat{a}_{1}-\hat{a}_{1}^{\dagger} \hat{a}_{2}\right), \\
\hat{J}_{3} & =\frac{1}{2}\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}-\hat{a}_{2}^{\dagger} \hat{a}_{2}\right) . \tag{7}
\end{align*}
$$

From now on we shall omit the 'hat', writing simply J_{i} instead of \hat{J}_{i}, and a_{α} instead of \hat{a}_{α}.
The angular momentum ladder operators $J_{ \pm}=J_{1} \pm i J_{2}$ assume a particularly simple form

$$
\begin{equation*}
J_{+}=a_{1}^{\dagger} a_{2} \quad, \quad J_{-}=a_{1} a_{2}^{\dagger} \tag{8}
\end{equation*}
$$

The angular momentum squared, $\vec{J}^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2}$, reads

$$
\begin{align*}
\vec{J}^{2} & =J_{3}^{2}+\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right) \\
& =\frac{1}{4}\left(a_{1}^{\dagger} a_{1}-a_{2}^{\dagger} a_{2}\right)^{2}+\frac{1}{2}\left(a_{1}^{\dagger} a_{1} a_{2} a_{2}^{\dagger}+a_{2}^{\dagger} a_{2} a_{1} a_{1}^{\dagger}\right) \\
& =\frac{1}{4}\left(N_{1}^{2}-2 N_{1} N_{2}+N_{2}^{2}\right)+\frac{1}{2}\left(N_{1} N_{2}-N_{1}+N_{1} N_{2}-N_{2}\right) \\
& =\frac{N}{2}\left(\frac{N}{2}+1\right), \tag{9}
\end{align*}
$$

where, in passing, we have denoted by N_{1}, N_{2}, and N the number operators

$$
\begin{equation*}
N_{1}=a_{1}^{\dagger} a_{1} \quad, \quad N_{2}=a_{2}^{\dagger} a_{2} . \quad, \quad N=N_{1}+N_{2} \tag{10}
\end{equation*}
$$

(Note that now $J_{3}=\frac{1}{2}\left(N_{1}-N_{2}\right)$.)
Normalized states with occupation numbers n_{1}, n_{2} (i.e., the simultaneous eigenstates of operators N_{1}, N_{2}) read

$$
\begin{equation*}
\left|n_{1}, n_{2}\right\rangle=\frac{\left(a_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(a_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{2}!}}|0\rangle, \tag{11}
\end{equation*}
$$

where $|0\rangle$ is the abstract vacuum state, and $n_{1}, n_{2}=0,1,2, \ldots$. These are also eigenstates $|j, m\rangle$ of J_{3} and $\overrightarrow{J^{2}}$:

$$
\begin{equation*}
J_{3}|j, m\rangle=m|j, m\rangle \quad, \quad \vec{J}^{2}|j, m\rangle=j(j+1) \quad, \quad|j, m\rangle=\left|n_{1}=j+m, n_{2}=j-m\right\rangle \tag{12}
\end{equation*}
$$

Therefore, adding a 'quantum' with a_{1}^{\dagger} increases the spin j and the spin projection m by $\frac{1}{2}$, whereas adding a 'quantum' with a_{2}^{\dagger} increases j by $\frac{1}{2}$, but decreases m by $\frac{1}{2}$ (see Fig.).

Note that the operators J_{i} of Eq. (7) preserve the total occupation number $n_{1}+n_{2}$, and hence also the value of spin j. The Fock space generated by $a_{1}^{\dagger}, a_{2}^{\dagger}$ then decomposes into subspaces, labelled by $j=\frac{1}{2}\left(n_{1}+n_{2}\right)=0, \frac{1}{2}, 1, \ldots$, which are invariant under the J_{i} (and, of course, under the derived operators $J_{ \pm}$and $\overrightarrow{J^{2}}$). Moreover, within the spin- j subspace, $m=-j,-j-1, \ldots, j$, as follows from the inequalities $j+m=n_{1} \geq 0$ and $j-m=n_{2} \geq 0$.

Let us remark that one can realize the abstract Fock space as a space of functions in two complex variables $f\left(z_{1}, z_{2}\right)$, and the abstract creation and annihilation operators as multiplicative and differential operators

$$
\begin{equation*}
a_{1}^{\dagger} \simeq z_{1} \quad, \quad a_{2}^{\dagger} \simeq z_{2} \quad, \quad a_{1} \simeq \frac{\partial}{\partial z_{1}} \quad, \quad a_{2} \simeq \frac{\partial}{\partial z_{2}} \tag{13}
\end{equation*}
$$

The vacuum state $|0\rangle$ is identified with 1 , and the scalar product can be defined via a two-fold integral over the complex plane

$$
\begin{equation*}
\langle f \mid g\rangle=\frac{1}{\pi^{2}} \int_{\mathbb{C}^{2}} f^{*}\left(z_{1}, z_{2}\right) g\left(z_{1}, z_{2}\right) e^{-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}} d z_{1} d z_{1}^{*} d z_{2} d z_{2}^{*} \tag{14}
\end{equation*}
$$

The states $|j, m\rangle$ are then realized by the polynomials

$$
\begin{equation*}
|j, m\rangle \simeq \frac{z_{1}^{j+m}}{\sqrt{(j+m)!}} \frac{z_{2}^{j-m}}{\sqrt{(j-m)!}} \tag{15}
\end{equation*}
$$

A. Spin coherent states

Let us define a spin coherent state by the formula

$$
\begin{align*}
|j, \mu\rangle & =e^{\mu J_{-}}|j, m=j\rangle \quad, \quad \mu \in \mathbb{C} \tag{16}\\
|j, \mu\rangle & =e^{\mu a_{2}^{\dagger} a_{1}} \frac{\left(a_{1}^{\dagger}\right)^{2 j}}{\sqrt{(2 j)!}}|0\rangle \\
& =e^{\mu a_{2}^{\dagger} a_{1}} \frac{\left(a_{1}^{\dagger}\right)^{2 j}}{\sqrt{(2 j)!}} e^{-\mu a_{2}^{\dagger} a_{1}}|0\rangle \\
& =\frac{1}{\sqrt{(2 j)!}}\left(e^{\mu a_{2}^{\dagger} a_{1}} a_{1}^{\dagger} e^{-\mu a_{2}^{\dagger} a_{1}}\right)^{2 j}|0\rangle \\
& =\frac{\left(a_{1}^{\dagger}+\mu a_{2}^{\dagger}\right)^{2 j}}{\sqrt{(2 j)!}}|0\rangle \tag{17}
\end{align*}
$$

To prove the last equality, observe that

$$
\begin{equation*}
\frac{d}{d \mu}\left(e^{\mu a_{2}^{\dagger} a_{1}} a_{1}^{\dagger} e^{-\mu a_{2}^{\dagger} a_{1}}\right)=a_{2}^{\dagger} e^{\mu a_{2}^{\dagger} a_{1}}\left[a_{1}, a_{1}^{\dagger}\right] e^{-\mu a_{2}^{\dagger} a_{1}}=a_{2}^{\dagger} \tag{18}
\end{equation*}
$$

In passing we note that Eq. (17) implies

$$
\begin{equation*}
\frac{\left(J_{-}\right)^{\ell}}{\ell!}|j, j\rangle=\frac{1}{\sqrt{(2 j)!}}\binom{2 j}{\ell}\left(a_{1}^{\dagger}\right)^{2 j-\ell}\left(a_{2}^{\dagger}\right)^{\ell}|0\rangle=\binom{2 j}{\ell}^{1 / 2}|j, j-\ell\rangle . \tag{19}
\end{equation*}
$$

III. COMPOSITION OF TWO ANGULAR MOMENTA

The Jordan-Schwinger representation for a system of two independent angular momenta (labelled a and b) utilizes four pairs of creation and annihilation operators, and identifies

$$
\begin{equation*}
J_{i}^{a}=\frac{1}{2}\left(\sigma_{i}\right)_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta} \quad, \quad J_{i}^{b}=\frac{1}{2}\left(\sigma_{i}\right)_{\alpha \beta} b_{\alpha}^{\dagger} b_{\beta} \quad, \quad J_{i}^{t o t}=J_{i}^{a}+J_{i}^{b} \tag{20}
\end{equation*}
$$

(Explicit expressions are analogous to those of Eq. (7).) Since $\left[J_{i}^{a}, J_{j}^{b}\right]=0$ for all $i, j=1,2,3$, the composed angular momentum operators $J_{i}^{t o t}$ satisfy the $\mathfrak{s u}(2)$ commutation relations, Eq. (5).

Our task is now to build out of the tensor product states $\left|j_{a}, m_{a}\right\rangle\left|j_{b}, m_{b}\right\rangle=\left|j_{a}, m_{a}\right\rangle \otimes\left|j_{b}, m_{b}\right\rangle$ (i.e., eigenstates of the operators $\left(\vec{J}^{a}\right)^{2}, J_{3}^{a},\left(\vec{J}^{b}\right)^{2}, J_{3}^{b}$) linear combinations that are eigenstates of operators $\left(\vec{J}^{a}\right)^{2},\left(\vec{J}^{b}\right)^{2},\left(\vec{J}^{t o t}\right)^{2}, J_{3}^{t o t}$. We shall denote the latter states by $\left|j_{a}, j_{b}, j_{t o t}, m_{t o t}\right\rangle$, and look for their expansion in terms of $\left|j_{a}, m_{a}\right\rangle\left|j_{b}, m_{b}\right\rangle$. The coefficients in this expansion are the Clebsch-Gordan coefficients.

First, we realize that

$$
\begin{equation*}
\left|j_{a}, j_{b}, j_{a}+j_{b}, j_{a}+j_{b}\right\rangle=\left|j_{a}, j_{a}\right\rangle\left|j_{b}, j_{b}\right\rangle=\frac{\left(a_{1}^{\dagger}\right)^{2 j_{a}}}{\sqrt{\left(2 j_{a}\right)!}} \frac{\left(b_{1}^{\dagger}\right)^{2 j_{b}}}{\sqrt{\left(2 j_{b}\right)!}}|0\rangle \tag{21}
\end{equation*}
$$

are common eigenstates for both sets of operators. From these we will generate all the other eigenstates $\left|j_{a}, j_{b}, j_{t o t}, m_{t o t}\right\rangle$ using the ladder operator $J_{-}^{t o t}$, which lowers the eigenvalue $m_{t o t}$, and the operator [2]

$$
\begin{equation*}
S^{\dagger}=a_{2}^{\dagger} b_{1}^{\dagger}-a_{1}^{\dagger} b_{2}^{\dagger}, \tag{22}
\end{equation*}
$$

which fulfils the following commutation relations:

$$
\begin{equation*}
\left[N^{a, b}, S^{\dagger}\right]=N^{a, b} \quad, \quad\left[J_{3}^{t o t}, S^{\dagger}\right]=0 \quad, \quad\left[J_{ \pm}^{t o t}, S^{\dagger}\right]=0 \tag{23}
\end{equation*}
$$

Moreover, by the last two relations, and the first line in Eq. (9),

$$
\begin{equation*}
\left[\left(\vec{J}^{t o t}\right)^{2}, S^{\dagger}\right]=0 \tag{24}
\end{equation*}
$$

That is, the operator S^{\dagger} raises (simultaneously) the eigenvalues j_{a} and j_{b} by $\frac{1}{2}$, while preserving $j_{t o t}$ and $m_{t o t}$:

$$
\begin{equation*}
S^{\dagger}\left|j_{a}, j_{b}, j_{t o t}, m_{t o t}\right\rangle=\alpha\left|j_{a}+\frac{1}{2}, j_{b}+\frac{1}{2}, j_{t o t}, m_{t o t}\right\rangle . \tag{25}
\end{equation*}
$$

To determine the factors α, we realize that the operator $S S^{\dagger}$ can be cast as

$$
\begin{equation*}
S S^{\dagger}=\left(\frac{N^{a}+N^{b}}{2}+1\right)\left(\frac{N^{a}+N^{b}}{2}+2\right)-\left(\vec{J}^{t o t}\right)^{2} \tag{26}
\end{equation*}
$$

Hence, choosing α real and positive, we find

$$
\begin{align*}
\alpha\left(j_{a}, j_{b}, j_{t o t}\right) & =\sqrt{\left(j_{a}+j_{b}+1\right)\left(j_{a}+j_{b}+2\right)-j_{t o t}\left(j_{t o t}+1\right)} \\
& =\sqrt{\left(j_{a}+j_{b}+1-j_{t o t}\right)\left(j_{a}+j_{b}+2+j_{t o t}\right)} \tag{27}
\end{align*}
$$

and after repeated application of S^{\dagger} we obtain

$$
\begin{equation*}
\frac{\left(S^{\dagger}\right)^{k}}{k!}\left|j_{a}, j_{b}, j_{a}+j_{b}, m_{t o t}\right\rangle=\binom{2\left(j_{a}+j_{b}\right)+k+1}{k}^{1 / 2}\left|j_{a}+\frac{k}{2}, j_{b}+\frac{k}{2}, j_{a}+j_{b}, m_{t o t}\right\rangle \tag{28}
\end{equation*}
$$

Now, Eqs. (28) and (19) give (writing for the moment $j_{a}^{\prime}, j_{b}^{\prime}$ instead of j_{a}, j_{b})

$$
\begin{align*}
& \frac{\left(J_{-}^{t o t}\right)^{\ell}}{\ell!} \frac{\left(S^{\dagger}\right)^{k}}{k!}\left|j_{a}^{\prime}, j_{b}^{\prime}, j_{a}^{\prime}+j_{b}^{\prime}, j_{a}^{\prime}+j_{b}^{\prime}\right\rangle= \\
& \quad=\binom{2\left(j_{a}^{\prime}+j_{b}^{\prime}\right)+k+1}{k}^{1 / 2}\binom{2\left(j_{a}^{\prime}+j_{b}^{\prime}\right)}{\ell}^{1 / 2}\left|j_{a}^{\prime}+\frac{k}{2}, j_{b}^{\prime}+\frac{k}{2}, j_{a}^{\prime}+j_{b}^{\prime}, j_{a}^{\prime}+j_{b}^{\prime}-\ell\right\rangle . \tag{29}
\end{align*}
$$

At the same time, the left-hand side is equal to

$$
\begin{align*}
& \left.\frac{\left(S^{\dagger}\right)^{k}}{k!} \frac{1}{\ell!} \frac{d^{\ell}}{d \mu^{\ell}}\right|_{\mu=0} e^{\mu\left(J_{-}^{a}+J_{-}^{b}\right)}\left|j_{a}^{\prime}, j_{a}^{\prime}\right\rangle\left|j_{b}^{\prime}, j_{b}^{\prime}\right\rangle= \\
& \quad=\left.\frac{\left(a_{2}^{\dagger} b_{1}^{\dagger}-a_{1}^{\dagger} b_{2}^{\dagger}\right)^{k}}{k!\ell!} \frac{d^{\ell}}{d \mu^{\ell}}\right|_{\mu=0} \frac{\left(a_{1}^{\dagger}+\mu a_{2}^{\dagger}\right)^{2 j_{a}^{\prime}}}{\sqrt{\left(2 j_{a}^{\prime}\right)!}} \frac{\left(b_{1}^{\dagger}+\mu b_{2}^{\dagger}\right)^{2 j_{b}^{\prime}}}{\sqrt{\left(2 j_{b}^{\prime}\right)!}}|0\rangle \tag{30}
\end{align*}
$$

where we have made use of Eq. (17).
In order to find the expansion of a state $\left|j_{a}, j_{b}, j_{t o t}, m_{t o t}\right\rangle$ in terms of $\left|j_{a}, m_{a}\right\rangle\left|j_{b}, m_{b}\right\rangle$ we set

$$
\begin{equation*}
k=j_{a}+j_{b}-j_{t o t} \quad, \quad \ell=j_{t o t}-m_{t o t} \quad, \quad j_{a}^{\prime}=\frac{j_{a}-j_{b}+j_{t o t}}{2} \quad, \quad j_{b}^{\prime}=\frac{-j_{a}+j_{b}+j_{t o t}}{2} \tag{31}
\end{equation*}
$$

and equate the right-hand sides of Eqs. (29) and (30):

$$
\begin{align*}
& \binom{j_{a}+j_{b}+j_{t o t}+1}{j_{a}+j_{b}-j_{t o t}}^{1 / 2}\binom{2 j_{t o t}}{j_{t o t}-m_{t o t}}^{1 / 2}\left|j_{a}, j_{b}, j_{t o t}, m_{t o t}\right\rangle= \\
& =\left.\frac{\left(a_{2}^{\dagger} b_{1}^{\dagger}-a_{1}^{\dagger} b_{2}^{\dagger}\right)^{j_{a}+j_{b}-j_{t o t}}}{\left(j_{a}+j_{b}-j_{t o t}\right)!\left(j_{t o t}-m_{t o t}\right)!} \frac{d^{j_{t o t}-m_{t o t}}}{d \mu^{j_{t o t}-m_{t o t}}}\right|_{\mu=0} \frac{\left(a_{1}^{\dagger}+\mu a_{2}^{\dagger}\right)^{j_{a}-j_{b}+j_{t o t}}}{\sqrt{\left(j_{a}-j_{b}+j_{t o t}\right)!}} \frac{\left(b_{1}^{\dagger}+\mu b_{2}^{\dagger}\right)^{-j_{a}+j_{b}+j_{t o t}}}{\sqrt{\left(-j_{a}+j_{b}+j_{t o t}\right)!}}|0\rangle . \tag{32}
\end{align*}
$$

The right-hand side is a sum of terms of the form

$$
\begin{equation*}
\frac{\left(a_{1}^{\dagger}\right)^{n_{1}^{a}}}{\sqrt{n_{1}^{a}!}} \frac{\left(a_{2}^{\dagger}\right)^{n_{2}^{a}}}{\sqrt{n_{2}^{a}!}} \frac{\left(b_{1}^{\dagger}\right)^{n_{1}^{b}}}{\sqrt{n_{1}^{b}!}} \frac{\left(b_{2}^{\dagger}\right)^{n_{2}^{b}}}{\sqrt{n_{2}^{b!}!}}|0\rangle=\left|j_{a}=\frac{1}{2}\left(n_{1}^{a}+n_{2}^{a}\right), m_{a}=\frac{1}{2}\left(n_{1}^{a}-n_{2}^{a}\right)\right\rangle \tag{33}
\end{equation*}
$$

A general explicit expression is relatively complicated so we merely illustrate the calculations with a simple example.

A. Example: $j_{a}=j_{b}=\frac{1}{2}$

In the case $j_{a}=j_{b}=\frac{1}{2}$ and $j_{t o t}=0, m_{t o t}=0$, and Eq. (32) gives:

$$
\begin{equation*}
\sqrt{2}\left|\frac{1}{2}, \frac{1}{2}, 0,0\right\rangle=\left(a_{2}^{\dagger} b_{1}^{\dagger}-a_{1}^{\dagger} b_{2}^{\dagger}\right)|0\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle-\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle . \tag{34}
\end{equation*}
$$

In the case $j_{a}=j_{b}=\frac{1}{2}, j_{t o t}=1$, Eq. (32) simplifies as follows:

$$
\begin{equation*}
\binom{2}{1-m_{t o t}}^{1 / 2}\left|\frac{1}{2}, \frac{1}{2}, 1, m_{t o t}\right\rangle=\left.\frac{1}{\left(1-m_{t o t}\right)!} \frac{d^{1-m_{t o t}}}{d \mu^{1-m_{t o t}}}\right|_{\mu=0}\left(a_{1}^{\dagger}+\mu a_{2}^{\dagger}\right)\left(b_{1}^{\dagger}+\mu b_{2}^{\dagger}\right)|0\rangle . \tag{35}
\end{equation*}
$$

This yields for $m_{t o t}=-1,0,1$

$$
\begin{align*}
\left|\frac{1}{2}, \frac{1}{2}, 1,-1\right\rangle & =a_{2}^{\dagger} b_{2}^{\dagger}|0\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
\sqrt{2}\left|\frac{1}{2}, \frac{1}{2}, 1,0\right\rangle & =\left(a_{2}^{\dagger} b_{1}^{\dagger}+a_{1}^{\dagger} b_{2}^{\dagger}\right)|0\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
\left|\frac{1}{2}, \frac{1}{2}, 1,1\right\rangle & =a_{1}^{\dagger} b_{1}^{\dagger}|0\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle . \tag{36}
\end{align*}
$$

APPENDIX A: REPRESENTATIONS ON VECTORS AND ON OPERATORS

For operators defined in Eq. (3) we now show that, for any N-tuple of parameters $\theta_{i} \in \mathbb{C}$,

$$
\begin{equation*}
\hat{a}_{\alpha}^{\dagger}\left(e^{\theta_{i} \mathbb{A}_{i}}\right)_{\alpha \beta}=e^{\theta_{j} \hat{A}_{j}} \hat{a}_{\beta}^{\dagger} e^{-\theta_{k} \hat{A}_{k}} \tag{A1}
\end{equation*}
$$

which can be further multiplied by a vector $\left(v_{\beta}\right)$ from the representation space to find a doublesided action on the corresponding operator $v_{\beta} \hat{a}_{\beta}$ (the right-hand side).

To this end, define operator-valued functions

$$
\begin{equation*}
\hat{\mathcal{O}}_{\beta}(\tau)=e^{\tau \theta_{j} \hat{A}_{j}} \hat{a}_{\beta}^{\dagger} e^{-\tau \theta_{k} \hat{A}_{k}} \tag{A2}
\end{equation*}
$$

and calculate, with a help of $\left[\hat{A}_{i}, \hat{a}_{\beta}^{\dagger}\right]=\hat{a}_{\alpha}^{\dagger}\left(\mathbb{A}_{i}\right)_{\alpha \beta}$,

$$
\begin{align*}
\frac{d}{d \tau} \hat{\mathcal{O}}_{\beta}(\tau) & =e^{\tau \theta_{j} \hat{A}_{j}}\left[\theta_{i} \hat{A}_{i}, \hat{a}_{\beta}^{\dagger}\right] e^{-\tau \theta_{k} \hat{A}_{k}} \\
& =\theta_{i} e^{\tau \theta_{j} \hat{A}_{j}} \hat{a}_{\alpha}^{\dagger}\left(\mathbb{A}_{i}\right)_{\alpha \beta} e^{-\tau \theta_{k} \hat{A}_{k}} \\
& =\hat{\mathcal{O}}_{\alpha}(\tau)\left(\theta_{i} \mathbb{A}_{i}\right)_{\alpha \beta} . \tag{A3}
\end{align*}
$$

Integration of this differential equation, observing the initial condition $\hat{\mathcal{O}}_{\beta}(0)=\hat{a}_{\beta}^{\dagger}$, yields

$$
\begin{equation*}
\hat{\mathcal{O}}_{\beta}(\tau)=\hat{a}_{\alpha}^{\dagger}\left(e^{\tau \theta_{i} \mathbb{A}_{i}}\right)_{\alpha \beta} \tag{A4}
\end{equation*}
$$

therefore proving relation (A1) upon setting $\tau=1$.

APPENDIX B: FERMIONIC OPERATORS

Instead of the bosonic operators a_{i}, a_{i}^{\dagger}, let us consider n pairs of fermionic operators f_{1}, \ldots, f_{n} and $f_{1}^{\dagger}, \ldots, f_{n}^{\dagger}$ with (canonical) anticommutation relations

$$
\begin{equation*}
\left\{\hat{f}_{\alpha}, \hat{f}_{\beta}^{\dagger}\right\}=\delta_{\alpha \beta} \quad, \quad\left\{\hat{f}_{\alpha}, \hat{f}_{\beta}\right\}=0 \quad, \quad\left\{\hat{f}_{\alpha}^{\dagger}, \hat{f}_{\beta}^{\dagger}\right\}=0 \tag{B1}
\end{equation*}
$$

and define, for we every \mathbb{A}_{i}, an operator

$$
\begin{equation*}
\hat{F}_{i}=\hat{f}_{\alpha}^{\dagger}\left(\mathbb{A}_{i}\right)_{\alpha \beta} \hat{f}_{\beta} \tag{B2}
\end{equation*}
$$

Due to the identity

$$
\begin{equation*}
[A B, C D]=A\{B, C\} D-A C\{B, D\}+\{A, C\} D B-C\{A, D\} B \tag{B3}
\end{equation*}
$$

which holds for arbitrary operators A, B, C, D, the operators \hat{F}_{i} form again a representation of the Lie algebra \mathfrak{g} :

$$
\begin{equation*}
\left[\hat{F}_{i}, \hat{F}_{j}\right]=c_{i j}^{k} \hat{F}_{k} \tag{B4}
\end{equation*}
$$

Moreover, since

$$
\begin{equation*}
[A B, C]=A\{B, C\}-\{A, C\} B \tag{B5}
\end{equation*}
$$

we have an analogue of Eq. (A1), namely,

$$
\begin{equation*}
\hat{f}_{\alpha}^{\dagger}\left(e^{\theta_{i} \mathbb{A}_{i}}\right)_{\alpha \beta}=e^{\theta_{j} \hat{F}_{j}} \hat{f}_{\beta}^{\dagger} e^{-\theta_{k} \hat{F}_{k}} \tag{B6}
\end{equation*}
$$

[1] J. Schwinger, On Angular Momentum, Unpublished Report, Number NYO-3071 (1952).
[2] J. Bellissard and R. Holtz, Composition of coherent spin states, J Math Phys 15, 1275 (1974).

[^0]: *Electronic address: zatlovac@gmail.com; URL: http://www.zatlovac.eu

