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The Jordan-Schwinger representation of the su(2) algebra utilizes ladder operators to efficiently
handle su(2) representations with arbitrary spin. In these notes we point out the usefulness of
this technique for calculating the Clebsch-Gordan coefficients when two angular momenta are being
composed.

I. JORDAN-SCHWINGER REPRESENTATION: GENERIC CASE

Let the n × n matrices A1, . . . ,AN form a representation (typically fundamental) of a Lie
algebra g:

[Ai,Aj ] = ckijAk, (1)

where ckij are the structure constants of g, and summation over k = 1, . . . , N is implied.

Consider n pairs of creation and annihilation operators â†1, . . . , â
†
n and â1, . . . , ân with usual

bosonic commutation relations

[âα, â
†
β ] = δαβ , [âα, âβ ] = 0 , [â†α, â

†
β ] = 0. (2)

Then, the operators

Âi = â†α(Ai)αβ âβ , (3)

where (Ai)αβ is the (α, β)-th entry of the matrix Ai, and summation over α, β = 1, . . . , n is
implied, form again a representation of the Lie algebra g. Indeed,

[Âi, Âj ] = (Ai)αβ(Aj)γδ [â†αâβ , â
†
γ âδ]

= (Ai)αβ(Aj)γδ (â†α[âβ , â
†
γ ]âδ + â†γ [â†α, âδ]âβ)

= (Ai)αβ(Aj)βδ â†αâδ − (Ai)αβ(Aj)γα â†γ âβ
= (AiAj − AjAi)αδ â†αâδ
= ckij(Ak)αβ â

†
αâβ

= ckijÂk. (4)

The map Ai 7→ Âi from matrices to operators (on an abstract Hilbert space) is referred to as the
Jordan-Schwinger map [1].
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II. JORDAN-SCHWINGER REPRESENTATION: su(2)

In particular, we will be concerned with the angular momentum Lie algebra su(2), whose
fundamental representation is spanned by the 2× 2 matrices Ji = σi

2 , i = 1, 2, 3, which fulfil the
commutation relations

[Ji, Jj ] = i εijk Jk. (5)

Here σi denote the standard Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6)

For the case of su(2), the Jordan-Schwinger map yields the following operators:

Ĵ1 =
1

2
(â†2â1 + â†1â2),

Ĵ2 =
i

2
(â†2â1 − â

†
1â2),

Ĵ3 =
1

2
(â†1â1 − â

†
2â2). (7)

From now on we shall omit the ‘hat’, writing simply Ji instead of Ĵi, and aα instead of âα.
The angular momentum ladder operators J± = J1 ± iJ2 assume a particularly simple form

J+ = a†1a2 , J− = a1a
†
2. (8)

The angular momentum squared, ~J2 = J2
1 + J2

2 + J2
3 , reads

~J2 = J2
3 +

1

2
(J+J− + J−J+)

=
1

4
(a†1a1 − a

†
2a2)2 +

1

2
(a†1a1 a2a

†
2 + a†2a2 a1a

†
1)

=
1

4
(N2

1 − 2N1N2 +N2
2 ) +

1

2
(N1N2 −N1 +N1N2 −N2)

=
N

2

(
N

2
+ 1

)
, (9)

where, in passing, we have denoted by N1, N2, and N the number operators

N1 = a†1a1 , N2 = a†2a2. , N = N1 +N2. (10)

(Note that now J3 = 1
2 (N1 −N2).)

Normalized states with occupation numbers n1, n2 (i.e., the simultaneous eigenstates of oper-
ators N1, N2) read

|n1, n2〉 =
(a†1)n1

√
n1!

(a†2)n2

√
n2!
|0〉 , (11)

where |0〉 is the abstract vacuum state, and n1, n2 = 0, 1, 2, . . .. These are also eigenstates |j,m〉
of J3 and ~J2:

J3 |j,m〉 = m |j,m〉 , ~J2 |j,m〉 = j(j + 1) , |j,m〉 = |n1 = j +m,n2 = j −m〉 . (12)
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Therefore, adding a ‘quantum’ with a†1 increases the spin j and the spin projection m by 1
2 ,

whereas adding a ‘quantum’ with a†2 increases j by 1
2 , but decreases m by 1

2 (see Fig.).
Note that the operators Ji of Eq. (7) preserve the total occupation number n1 +n2, and hence

also the value of spin j. The Fock space generated by a†1, a†2 then decomposes into subspaces,
labelled by j = 1

2 (n1 + n2) = 0, 12 , 1, . . ., which are invariant under the Ji (and, of course, under

the derived operators J± and ~J2). Moreover, within the spin-j subspace, m = −j,−j − 1, . . . , j,
as follows from the inequalities j +m = n1 ≥ 0 and j −m = n2 ≥ 0.

Let us remark that one can realize the abstract Fock space as a space of functions in two
complex variables f(z1, z2), and the abstract creation and annihilation operators as multiplicative
and differential operators

a†1 ' z1 , a†2 ' z2 , a1 '
∂

∂z1
, a2 '

∂

∂z2
. (13)

The vacuum state |0〉 is identified with 1, and the scalar product can be defined via a two-fold
integral over the complex plane

〈f |g〉 =
1

π2

∫
C2

f∗(z1, z2) g(z1, z2) e−|z1|
2−|z2|2dz1dz

∗
1dz2dz

∗
2 . (14)

The states |j,m〉 are then realized by the polynomials

|j,m〉 ' zj+m1√
(j +m)!

zj−m2√
(j −m)!

. (15)

A. Spin coherent states

Let us define a spin coherent state by the formula

|j, µ〉 = eµJ− |j,m = j〉 , µ ∈ C. (16)

|j, µ〉 = eµa
†
2a1

(a†1)2j√
(2j)!

|0〉

= eµa
†
2a1

(a†1)2j√
(2j)!

e−µa
†
2a1 |0〉

=
1√
(2j)!

(eµa
†
2a1a†1e

−µa†2a1)2j |0〉

=
(a†1 + µa†2)2j√

(2j)!
|0〉 . (17)

To prove the last equality, observe that

d

dµ
(eµa

†
2a1a†1e

−µa†2a1) = a†2 e
µa†2a1 [a1, a

†
1]e−µa

†
2a1 = a†2. (18)

In passing we note that Eq. (17) implies

(J−)`

`!
|j, j〉 =

1√
(2j)!

(
2j

`

)
(a†1)2j−`(a†2)` |0〉 =

(
2j

`

)1/2

|j, j − `〉 . (19)
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III. COMPOSITION OF TWO ANGULAR MOMENTA

The Jordan-Schwinger representation for a system of two independent angular momenta (la-
belled a and b) utilizes four pairs of creation and annihilation operators, and identifies

Jai =
1

2
(σi)αβa

†
αaβ , Jbi =

1

2
(σi)αβb

†
αbβ , J toti = Jai + Jbi . (20)

(Explicit expressions are analogous to those of Eq. (7).) Since [Jai , J
b
j ] = 0 for all i, j = 1, 2, 3, the

composed angular momentum operators J toti satisfy the su(2) commutation relations, Eq. (5).
Our task is now to build out of the tensor product states |ja,ma〉 |jb,mb〉 = |ja,ma〉 ⊗ |jb,mb〉

(i.e., eigenstates of the operators ( ~Ja)2, Ja3 , (
~Jb)2, Jb3) linear combinations that are eigenstates of

operators ( ~Ja)2, ( ~Jb)2, ( ~J tot)2, J tot3 . We shall denote the latter states by |ja, jb, jtot,mtot〉, and
look for their expansion in terms of |ja,ma〉 |jb,mb〉. The coefficients in this expansion are the
Clebsch-Gordan coefficients.

First, we realize that

|ja, jb, ja + jb, ja + jb〉 = |ja, ja〉 |jb, jb〉 =
(a†1)2ja√

(2ja)!

(b†1)2jb√
(2jb)!

|0〉 (21)

are common eigenstates for both sets of operators. From these we will generate all the other
eigenstates |ja, jb, jtot,mtot〉 using the ladder operator J tot− , which lowers the eigenvalue mtot,
and the operator [2]

S† = a†2b
†
1 − a

†
1b
†
2, (22)

which fulfils the following commutation relations:

[Na,b, S†] = Na,b , [J tot3 , S†] = 0 , [J tot± , S†] = 0. (23)

Moreover, by the last two relations, and the first line in Eq. (9),

[( ~J tot)2, S†] = 0. (24)

That is, the operator S† raises (simultaneously) the eigenvalues ja and jb by 1
2 , while preserving

jtot and mtot:

S† |ja, jb, jtot,mtot〉 = α
∣∣ja + 1

2 , jb + 1
2 , jtot,mtot

〉
. (25)

To determine the factors α, we realize that the operator SS† can be cast as

SS† =

(
Na +N b

2
+ 1

)(
Na +N b

2
+ 2

)
− ( ~J tot)2. (26)

Hence, choosing α real and positive, we find

α(ja, jb, jtot) =
√

(ja + jb + 1)(ja + jb + 2)− jtot(jtot + 1)

=
√

(ja + jb + 1− jtot)(ja + jb + 2 + jtot), (27)

and after repeated application of S† we obtain

(S†)k

k!
|ja, jb, ja + jb,mtot〉 =

(
2(ja + jb) + k + 1

k

)1/2 ∣∣ja + k
2 , jb + k

2 , ja + jb,mtot

〉
. (28)
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Now, Eqs. (28) and (19) give (writing for the moment j′a, j
′
b instead of ja, jb)

(J tot− )`

`!

(S†)k

k!
|j′a, j′b, j′a + j′b, j

′
a + j′b〉 =

=

(
2(j′a + j′b) + k + 1

k

)1/2(
2(j′a + j′b)

`

)1/2 ∣∣j′a + k
2 , j
′
b + k

2 , j
′
a + j′b, j

′
a + j′b − `

〉
. (29)

At the same time, the left-hand side is equal to

(S†)k

k!

1

`!

d`

dµ`

∣∣∣∣
µ=0

eµ(J
a
−+J

b
−) |j′a, j′a〉 |j′b, j′b〉 =

=
(a†2b

†
1 − a

†
1b
†
2)k

k! `!

d`

dµ`

∣∣∣∣
µ=0

(a†1 + µa†2)2j
′
a√

(2j′a)!

(b†1 + µb†2)2j
′
b√

(2j′b)!
|0〉 , (30)

where we have made use of Eq. (17).
In order to find the expansion of a state |ja, jb, jtot,mtot〉 in terms of |ja,ma〉 |jb,mb〉 we set

k = ja + jb − jtot , ` = jtot −mtot , j′a =
ja − jb + jtot

2
, j′b =

−ja + jb + jtot
2

, (31)

and equate the right-hand sides of Eqs. (29) and (30):(
ja + jb + jtot + 1

ja + jb − jtot

)1/2(
2jtot

jtot −mtot

)1/2

|ja, jb, jtot,mtot〉 =

=
(a†2b

†
1 − a

†
1b
†
2)ja+jb−jtot

(ja + jb − jtot)!(jtot −mtot)!

djtot−mtot

dµjtot−mtot

∣∣∣∣
µ=0

(a†1 + µa†2)ja−jb+jtot√
(ja − jb + jtot)!

(b†1 + µb†2)−ja+jb+jtot√
(−ja + jb + jtot)!

|0〉 .

(32)

The right-hand side is a sum of terms of the form

(a†1)n
a
1√

na1 !

(a†2)n
a
2√

na2 !

(b†1)n
b
1√

nb1!

(b†2)n
b
2√

nb2!
|0〉 =

∣∣ja = 1
2 (na1 + na2),ma = 1

2 (na1 − na2)
〉
. (33)

A general explicit expression is relatively complicated so we merely illustrate the calculations
with a simple example.

A. Example: ja = jb = 1
2

In the case ja = jb = 1
2 and jtot = 0, mtot = 0, and Eq. (32) gives:

√
2
∣∣ 1
2 ,

1
2 , 0, 0

〉
= (a†2b

†
1 − a

†
1b
†
2) |0〉 =

∣∣ 1
2 ,−

1
2

〉 ∣∣ 1
2 ,

1
2

〉
−
∣∣ 1
2 ,

1
2

〉 ∣∣ 1
2 ,−

1
2

〉
. (34)

In the case ja = jb = 1
2 , jtot = 1, Eq. (32) simplifies as follows:(

2

1−mtot

)1/2 ∣∣ 1
2 ,

1
2 , 1,mtot

〉
=

1

(1−mtot)!

d1−mtot

dµ1−mtot

∣∣∣∣
µ=0

(a†1 + µa†2)(b†1 + µb†2) |0〉 . (35)

This yields for mtot = −1, 0, 1∣∣ 1
2 ,

1
2 , 1,−1

〉
= a†2b

†
2 |0〉 =

∣∣ 1
2 ,−

1
2

〉 ∣∣ 1
2 ,−

1
2

〉
,

√
2
∣∣ 1
2 ,

1
2 , 1, 0

〉
= (a†2b

†
1 + a†1b

†
2) |0〉 =

∣∣ 1
2 ,−

1
2

〉 ∣∣ 1
2 ,

1
2

〉
+
∣∣ 1
2 ,

1
2

〉 ∣∣ 1
2 ,−

1
2

〉
,∣∣ 1

2 ,
1
2 , 1, 1

〉
= a†1b

†
1 |0〉 =

∣∣ 1
2 ,

1
2

〉 ∣∣ 1
2 ,

1
2

〉
. (36)
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APPENDIX A: REPRESENTATIONS ON VECTORS AND ON OPERATORS

For operators defined in Eq. (3) we now show that, for any N -tuple of parameters θi ∈ C,

â†α (eθiAi)αβ = eθjÂj â†β e
−θkÂk , (A1)

which can be further multiplied by a vector (vβ) from the representation space to find a double-
sided action on the corresponding operator vβ âβ (the right-hand side).

To this end, define operator-valued functions

Ôβ(τ) = eτθjÂj â†β e
−τθkÂk , (A2)

and calculate, with a help of [Âi, â
†
β ] = â†α(Ai)αβ ,

d

dτ
Ôβ(τ) = eτθjÂj [θiÂi, â

†
β ] e−τθkÂk

= θi e
τθjÂj â†α(Ai)αβ e−τθkÂk

= Ôα(τ)(θiAi)αβ . (A3)

Integration of this differential equation, observing the initial condition Ôβ(0) = â†β , yields

Ôβ(τ) = â†α(eτθiAi)αβ , (A4)

therefore proving relation (A1) upon setting τ = 1.

APPENDIX B: FERMIONIC OPERATORS

Instead of the bosonic operators ai, a
†
i , let us consider n pairs of fermionic operators f1, . . . , fn

and f†1 , . . . , f
†
n with (canonical) anticommutation relations

{f̂α, f̂†β} = δαβ , {f̂α, f̂β} = 0 , {f̂†α, f̂
†
β} = 0, (B1)

and define, for we every Ai, an operator

F̂i = f̂†α(Ai)αβ f̂β . (B2)

Due to the identity

[AB,CD] = A{B,C}D −AC{B,D}+ {A,C}DB − C{A,D}B, (B3)

which holds for arbitrary operators A,B,C,D, the operators F̂i form again a representation of
the Lie algebra g:

[F̂i, F̂j ] = ckijF̂k. (B4)

Moreover, since

[AB,C] = A{B,C} − {A,C}B, (B5)

we have an analogue of Eq. (A1), namely,

f̂†α (eθiAi)αβ = eθj F̂j f̂†β e
−θkF̂k . (B6)
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